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PREFACE

The term ‘quantum group’ was popularized in the 1980s and, in fact, does not have a
precise meaning. The closely related, and rigorously defined, notion of a Hopf algebra
appeared much earlier, in the 1950s. It has its origin in a work by Hopf [41] from 1941
on algebraic topology, who observed that the cohomology ring of a compact group G
has a homomorphism H�(G)! H�(G)
H�(G). A related, and even more elementary,
example of such structure is the following: for a finite group G and the algebra C(G) of
functions on G with pointwise multiplication we can define a homomorphism, called
comultiplication,

�: C(G)! C(G)
 C(G) = C(G� G) by �(f)(g; h) = f(gh):

What is important, is that the pair (C(G);�) contains complete information about the
group G: the spectrum of the algebra C(G) is G, and the comultiplication � allows us
to recover the group law. We refer the reader to [1] for a thorough discussion of the
origins of the theory of Hopf algebras. The part of the story that is particularly rele-
vant for us starts in the early 1960s with a work by Kac [47]. His idea was to develop a
duality theory that generalizes Pontryagin duality for abelian locally compact groups.
Such a generalization for compact groups had already been obtained by Tannaka [77]
and Krein [54], but even in that case it was not entirely satisfactory in the sense that
the dual of a compact group G was an object of a quite different nature, the category
of finite dimensional representations of G concretely realized as a category of vector
spaces. Kac’s idea was to describe both a locally compact group and its dual using von
Neumann algebras with comultiplication satisfying certain properties, and this way ob-
tain a self-dual category. Such a theory, nowadays called the theory of Kac algebras, was
finally developed in the 1970s by Kac-Vainerman and Enock-Schwartz, see [29].

Being a significant technical achievement, the theory of Kac algebras nevertheless
suffered from the lack of interesting examples that were not of group origin, that is,
were neither algebras of functions nor their duals, group algebras. For similar reasons
the general theory of Hopf algebras remained at that time a small branch of algebra.
The situation changed drastically in the middle 1980s, when Jimbo [44] and Drin-
feld [26] introduced new Hopf algebras by deforming universal enveloping algebras
of semisimple Lie groups. Working in the formal deformation setting Drinfeld also
introduced their dual objects, deformations of the Hopf algebras of regular functions
on semisimple Lie groups. He suggested the term ‘quantum groups’ for Hopf algebras
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ii PREFACE

related to these constructions. In the analytic, non-formal, setting the quantized alge-
bra of functions on SU(2) was then studied in detail by Vaksman and Soibelman [82].
Simultaneously, and independently of Drinfeld-Vaksman-Soibelman, a deformation
of the algebra of continuous functions on SU(2) was defined by Woronowicz [95].
Remarkably, he arrived at exactly the same definition.

Following the foundational works by Drinfeld, Jimbo, Soibelman, Vaksman and
Woronowicz, the theory of quantum groups saw several years of explosive growth,
apparently unprecedented in the history of mathematics, with ground-breaking ap-
plications to knot theory, topology of 3-manifolds and conformal field theory [80].
This was entwined with the development of noncommutative geometry by Connes,
the free probability theory by Voiculescu and the Jones theory of subfactors. Since
then quantum group theory has developed in several directions and by now there is
probably no single expert who has a firm grasp of all of its aspects.

In this book we take the analytic point of view, meaning that we work with algebras
of, preferably bounded, operators on Hilbert spaces. For an introduction to quantum
groups from the purely algebraic side see e.g., [18]. According to the standard mantra
of noncommutative geometry, an algebra of operators should be thought of as an al-
gebra of functions on a noncommutative locally compact space, with C� -algebras play-
ing the role of continuous functions and von Neumann algebras playing the role of
measurable functions. From this perspective a quantum group is a C� -/von Neumann
algebra with some additional structure making the noncommutative space a group-
like object. Kac algebras give an example of such structure, but as it turned out their
class is too narrow to accommodate the objects arising from Drinfeld-Jimbo deforma-
tions. A sufficiently broad theory was developed first in the compact case by Woronow-
icz [97], and then in the general, significantly more complicated, locally compact case
by Kustermans-Vaes [55] and Masuda-Nakagami-Woronowicz [63]. No theory is com-
plete without interesting examples, and here there are plenty of them. In addition to
examples arising from Drinfeld-Jimbo deformations, there is a large class of quantum
groups defined as symmetries of noncommutative spaces. This line of research was ini-
tiated by Wang [89, 90] and has been extensively pursued by Banica and his collabora-
tors, see e.g., [8, 9]. A related idea is to define quantum isometries of noncommutative
Riemannian manifolds, recently suggested by Goswami and Bhowmick [37, 12].

The goal of this short book is to introduce the reader to this beautiful area of math-
ematics, concentrating on the technically easier compact case and emphasizing the
role of the categorical point of view in constructing and analyzing concrete examples.
Specifically, the first two chapters, occupying approximately 2=3 of the book, contain
a general theory of compact quantum groups together with some of the most famous
examples. Having mastered the material in these chapters, the reader will hopefully
be well prepared for a more thorough study of any of the topics we mentioned above.
The next two chapters are motivated by our own interests in noncommutative geome-
try of quantum groups and concentrate on certain aspects of the structure of Drinfeld-
Jimbo deformations. The general theme of these chapters is the Drinfeld-Kohno the-
orem, which is one of the most famous results in the whole theory of quantum groups,
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presented from the analytic point of view together with its operator algebraic ramifi-
cations. Each section is supplied with a list of references. We try to give references to
original papers, where the results of a particular section and/or some related results
have appeared. The literature on quantum groups is vast, so some omissions are un-
avoidable, and the references are meant to be pointers to the literature rather than
exhaustive bibliographies on a particular subject.

We tried to make the exposition reasonably self-contained, but certain prerequisites
are of course assumed. The book is first of all intended for students specializing in
operator algebras, so we assume that the reader has at least taken a basic course in
C� -algebras as e.g., covered in Murphy [65]. The reader should also have a minimal
knowledge of semisimple Lie groups, see e.g., Part II in Bump [17], without which it
is difficult to fully understand Drinfeld-Jimbo deformations. Finally, it is beneficial to
have some acquaintance with category theory. Although we give all the necessary defi-
nitions in the text (apart from the most basic ones, for those see e.g., the first chapter
in Mac Lane [61]), the reader who sees them for the first time will have to work harder
to follow the arguments.

Let us say a few words about notation.
We denote by the same symbol 
 all kinds of tensor products, the exact meaning

should be clear from the context: for spaces with no topology this denotes the usual
tensor product over C, for Hilbert spaces - the tensor product of Hilbert spaces (that
is, the completion of the algebraic tensor product with respect to the obvious scalar
product), for C� -algebras - the minimal tensor product.

For vector spaces H1 and H2 with no topology we denote by B(H1; H2) the space
of linear operators H1 ! H2 . If H1 and H2 are Hilbert spaces, then the same sym-
bol B(H1; H2) denotes the space of bounded linear operators. We write B(H) instead
of B(H;H).

If A is a vector space with no topology, then A � denotes the space of all linear
functionals on A . For topological vector spaces the same symbol denotes the space of
all continuous linear functionals.

The symbol � denotes the identity map.
In order to simplify long complicated expressions, we omit the symbol � for the com-

position of maps, as well as use brackets only for arguments, but not for maps. Thus we
write ST (x) instead of (S � T )(x).

This book grew out of a 10-lecture course taught by the first author at the Institut
Henri Poincaré in the spring 2009. We are grateful to the Fondation Sciences Math-
ématiques de Paris for the assistance in typing the notes for the course. The subse-
quent work on the book was supported by the Research Council of Norway and the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement no. 307663. It is our pleasure to
thank our colleagues Jyotishman Bhowmick for reading parts of the manuscript and
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Makoto Yamashita for fruitful discussions, particularly on the content of the last sec-
tion. We are also deeply grateful to the referee for pointing out a number of misprints
and for her/his numerous suggestions that greatly improved the exposition.

Sergey Neshveyev & Lars Tuset
February 22, 2013

COURS SPÉCIALISÉS 20



CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1. Compact Quantum Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Definition and first examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Haar state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Quantum dimension and orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5. Infinite dimensional representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6. Hopf �-algebra of matrix coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7. Modular properties of the Haar state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2. C� -Tensor Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1. Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2. Conjugate objects and intrinsic dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3. Fiber functors and reconstruction theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4. Drinfeld-Jimbo deformation of compact Lie groups . . . . . . . . . . . . . . . . . . . . . 61
2.5. Representation category of SUq(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.6. Braided and ribbon categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.7. Amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3. Cohomology of Quantum Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.1. Dual cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2. Group-like elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3. Kazhdan-Lusztig comonoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4. Computation of invariant second cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4. Drinfeld Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1. Drinfeld category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2. Equivalence of tensor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3. Drinfeld twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4. Normalization of Drinfeld twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167





CHAPTER 1

COMPACT QUANTUM GROUPS

This chapter contains fundamentals of the theory of compact quantum groups. Af-
ter some basic definitions we present several nontrivial examples of such objects. The
core of the chapter is the representation theory. We first develop it in finite dimen-
sions, and then move to infinite dimensional representations, which unavoidably re-
quires a bit better acquaintance with operator algebras. Overall the theory is very sim-
ilar to the representation theory of compact groups. The additional technical difficul-
ties arise from modular properties of the quantum analogue of Haar measure. Among
other topics we discuss the dual picture of discrete quantum groups, which plays an
important role in the subsequent chapters.

1.1. DEFINITION AND FIRST EXAMPLES

According to the philosophy of noncommutative geometry, unital C� -algebras
should be thought of as algebras of continuous functions on noncommutative, or
quantum, compact spaces. We want to define a ‘group structure’ on such spaces. As
we will gradually convince ourselves, the following definition makes a lot of sense.

Definition 1.1.1. — (Woronowicz) A compact quantum group is a pair (A;�), where A

is a unital C� -algebra and �: A! A
 A is a unital �-homomorphism, called comulti-
plication, such that

(i) (�
 �)� = (�
 �)� as homomorphisms A! A
 A
 A (coassociativity);

(ii) the spaces (A
 1)�(A) = spanf(a
 1)�(b) j a; b 2 Ag and (1
A)�(A) are dense
in A
 A (cancellation property).

We remind that by the tensor product of C� -algebras we always mean the minimal
tensor product.
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2 CHAPTER 1. COMPACT QUANTUM GROUPS

Example 1.1.2. — Let G be a compact group. Take A to be the C� -algebra C(G) of con-
tinuous functions on G. Then A
 A = C(G� G), so we can define � by

�(f)(g; h) = f(gh) for all g; h 2 G:

Coassociativity of � follows from associativity of the product in G. To see that the can-
cellation property holds, note that (A
 1)�(A) is the unital �-subalgebra of C(G�G)

spanned by all functions of the form (g; h) 7! f1(g)f2(gh). Since such functions sepa-
rate points of G, the �-algebra (A
1)�(A) is dense in C(G�G) by the Stone-Weierstrass
theorem.

Any compact quantum group (A;�) with abelian A is of this form. Indeed, by the
Gelfand theorem, A = C(G) for a compact space G. Then, since A
A = C(G�G), the
unital �-homomorphism � is defined by a continuous map G�G! G. Coassociativity
means that

f((gh)k) = f(g(hk)) for all f 2 C(G);

whence (gh)k = g(hk), so G is a compact semigroup. If gh = gk , then f1(g)f2(gh) =

f1(g)f2(gk) for all f1; f2 2 C(G). By the cancellation property the functions of the
form (g0; h0) 7! f1(g0)f2(g0h0) span a dense subspace of C(G � G). It follows that
f(g; h) = f(g; k) for all f 2 C(G� G), whence h = k . Similarly, if hg = kg , then h = k .
Thus G is a semigroup with cancellation.

It remains to show that any compact semigroup with cancellation is a group. Let us
first show that G has a (necessarily unique) unit element. For this take any element
h 2 G and let H be the closed subsemigroup of G generated by h. It is clearly abelian.
If I1; I2 � H are ideals, then I1 \ I2 � I1I2 = I2I1 , so by compactness the intersection
Ih of all closed ideals in H is a nonempty closed ideal. Then kIh = Ih for any k 2 H ,
because kIh � Ih and kIh is a closed ideal in H . In particular, taking k 2 Ih we can
find e 2 Ih such that ke = k . Then keg = kg for any g 2 G, and by cancellation we get
eg = g . Similarly ge = g . Thus e is a unit in G.

In order to see that every element h in G is invertible, note that by the above argu-
ment we have e 2 Ih = hIh . Hence there exists k 2 Ih such that kh = hk = e.

It remains to show that the map g 7! g�1 is continuous. For this, consider the map
G�G! G�G, (g; h) 7! (g; gh). It is continuous and bijective. Since the space G�G is
compact, it follows that the inverse map, (g; h) 7! (g; g�1h), is also continuous. Hence
the map g 7! g�1 is continuous.

In view of this example, for any compact quantum group G = (A;�) we write C(G)

for A.

As we saw in the above example, when G is a genuine compact group, the cancella-
tion property is used to prove the existence of inverse. One may wonder why one does
not try to encode in the definition of a compact quantum group the properties of the
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1.1. DEFINITION AND FIRST EXAMPLES 3

map f 7! �f , where �f(g) = f(g�1), instead of introducing the cancellation property.
The reason is that, as we will see later, the analogue of this map in the quantum setting
is unbounded in most interesting cases.

Example 1.1.3. — Let � be a discrete group. Consider the left regular representation �

on `2(�), which maps 
 2 � into the operator �
 defined by �
�
0 = �

0 . The reduced
C� -algebra C�r (�) of � is by definition the closed linear span of the operators �
 , 
 2 �.
Define a compact quantum group G = �̂ as follows:

C(G) = C�r (�); �(�
) = �
 
 �
:

The comultiplication � is cocommutative, in the sense that � = �op , where �op = ��

and �: C�r (�)
 C�r (�)! C�r (�)
 C�r (�) is the flip.
Instead of C�r (�) we could also consider the full group C� -algebra C�(�). Any

compact quantum group with cocommutative comultiplication sits between C�r (�)

and C�(�) for a uniquely defined discrete group �. Rather than proving this, we will
confine ourselves to showing how � can be recovered from (C�r (�);�):

f�
 j 
 2 �g = fa 2 C�r (�) j �(a) = a
 a; a 6= 0g:

To see this, assume a 2 C�r (�), a 6= 0, is such that �(a) = a
 a. Let � be the canonical
trace on C�r (�), so �(�
) = 0 for 
 6= e. Since � is faithful, replacing a by �
a for some 


we may assume that �(a) 6= 0. Consider the completely positive map E : C�r (�)! C�r (�)

defined by E = (�
 �)�. We have E(a) = �(a)a and E(�
) = 0 for 
 6= e. Since a can
be approximated in norm by linear combinations of elements �
 , we see that �(a)a

can be approximated arbitrary well by a multiple of �e , so a is a scalar. As �(a) = a
a,
we thus get a = 1.

To give examples of compact quantum groups that are neither commutative nor
cocommutative, we will need a sufficient condition for the cancellation property.

Proposition 1.1.4. — Assume A is a unital C� -algebra generated by elements uij , 1 � i; j � n,
such that the matrices (uij)i;j and (u�ij)i;j are invertible in Matn(A), and �: A! A
 A is a
unital �-homomorphism such that

�(uij) =
nX

k=1

uik 
 ukj :

Then (A;�) is a compact quantum group.

Proof. — The coassociativity of � is immediate. To prove that �(A)(1 
 A) is dense
in A
 A, it suffices to show that the space

B =

²
a 2 A : a
 1 =

X
i

�(xi)(1
 yi) for some xi; yi

¦
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4 CHAPTER 1. COMPACT QUANTUM GROUPS

is dense in A. Note that B is an algebra, as if a 
 1 =
P

i �(xi)(1 
 yi) and b 
 1 =P
j �(x0j)(1
 y0j), then

ab
 1 =
X
i

�(xi)(b
 1)(1
 yi) =
X
i;j

�(xix
0
j)(1
 y0jyi):

Let V = (vij)i;j be the inverse of (uij)i;j . Then
nX

j=1

�(uij)(1
 vjk) =
nX

j;l=1

uil 
 uljvjk = uik 
 1;

so uik 2 B . Similarly u�ik 2 B . Hence B is dense in A, and therefore (1 
 A)�(A) is
dense in A
 A. Similarly, (A
 1)�(A) is dense in A
 A.

Compact quantum groups satisfying the assumptions of the above proposition are
called compact matrix pseudogroups.

We can now give several examples of compact quantum groups. In all these exam-
ples the C� -algebra C(G) will be defined as a universal C� -algebra generated by ele-
ments satisfying certain relations. In general one should be careful with such construc-
tions, since not every �-algebra admits a C� -enveloping algebra. But in all our exam-
ples the matrix formed by the generators will be assumed to be unitary. In this case
the norm of every generator is not larger than 1 in every �-representation by bounded
operators on a Hilbert space, so the C� -enveloping algebra is well-defined. What is,
however, more difficult to see in many cases is that the C� -algebras we will define are
sufficiently large. The right tools for showing this will be developed in the next chapter.

Example 1.1.5. — (Quantum SU(2) group)
Assume q 2 [�1; 1], q 6= 0. The quantum group SUq(2) is defined as follows. The al-

gebra C(SUq(2)) is the universal unital C� -algebra generated by elements � and 
 such

that (uij)i;j =

 
� �q
�


 ��

!
is unitary. As one can easily check, this gives the following

relations:

��� + 
�
 = 1; ��� + q2
�
 = 1; 
�
 = 

�; �
 = q
�; �
� = q
��:

The comultiplication is defined by

�(uij) =
X
k

uik 
 ukj ;

so
�(�) = �
 �� q
� 
 
; �(
) = 

 � + �� 
 
:

Let � 2 C be such that �2 = q . Then 
0 ��

��1 0

! 
�� �q



� �

! 
0 �

���1 0

!
=

 
� �q
�


 ��

!
:
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1.1. DEFINITION AND FIRST EXAMPLES 5

Hence (u�ij)i;j is invertible. Therefore SUq(2) is a compact quantum group.

When q = 1 we get the usual compact group SU(2). Indeed, consider the functions
~uij on SU(2) defined by ~uij(V ) = Vij for V 2 SU(2). Then by universality we have a uni-
tal �-homomorphism � : C(SU1(2)) ! C(SU(2)) such that �(uij) = ~uij . This homo-
morphism is surjective by the Stone-Weierstrass theorem. Since C(SU1(2)) is abelian,
in order to see that � is injective it suffices to show that any character of C(SU1(2))

factors through C(SU(2)). Assume � is such a character. Then �(U) 2 SU(2). But this
means that � is the composition of the character f 7! f(�(U)) on C(SU(2)) with �.
Thus � is an isomorphism. Finally, � respects comultiplication: the identity

�(~uij) =
X
k

~uik 
 ~ukj

is simply an equivalent way of writing matrix multiplication for elements of SU(2).

The quantum groups SUq(2) for q 6= 1 can be thought of as deformations of SU(2).
We will make this statement a bit more precise later.

Example 1.1.6. — (Free unitary quantum groups)
Let F 2 GLn(C), n � 2, be such that Tr(F �F ) = Tr((F �F )�1). Denote by Au(F )

the universal C� -algebra generated by elements uij , 1 � i; j � n, such that

U = (uij)i;j and FU cF�1 are unitary;

where U c = (u�ij)i;j . The comultiplication is defined by

�(uij) =
X
k

uik 
 ukj :

We will use the same notation Au(F ) for this compact quantum group and for the
C� -algebra of continuous functions on it.

For F = 1 the algebra Au(F ) is denoted by Au(n). It is a ‘liberation’ of C(U(n)) in
the sense that C(U(n)) satisfies the same relations as Au(n) plus commutativity.

Example 1.1.7. — (Free orthogonal quantum groups)
Let F 2 GLn(C), n � 2, be such that F �F = �1, where �F is the matrix obtained

from F by taking the complex conjugate of every entry. Define Ao(F ) as the universal
C� -algebra generated by uij , 1 � i; j � u, such that

U = (uij)i;j is unitary and U = FU cF�1:

The comultiplication is defined by

�(uij) =
X
k

uik 
 ukj :

Again, we will use the same notation Ao(F ) for this compact quantum group and for
the C� -algebra of continuous functions on it.
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Note that we automatically have Tr(F �F ) = Tr((F �F )�1). Therefore Ao(F ) is a
quotient of Au(F ).

Observe also that SUq(2) is an example of a free orthogonal group, with F = 
0 ��

��1 0

!
, where � is a square root of q .

Similarly to the previous example, for F = 1 the algebra Ao(F ) is denoted by Ao(n).
It is a liberation of C(O(n; R)), meaning that C(O(n; R)) satisfies the same relations as
Ao(n) plus commutativity.

Example 1.1.8. — (Quantum permutation groups)
For n 2 N, denote by As(n) the universal C� -algebra generated by elements uij ,

1 � i; j � n, such that

U = (uij)i;j is a ‘magic unitary’;

meaning that U is unitary, all its entries uij are projections, and the sum of the entries
in every row and column of U is equal to one. As before, the comultiplication is defined
by

�(uij) =
X
k

uik 
 ukj :

We have a unital �-homomorphism C(As(n))! C(Sn) respecting comultiplication,
where Sn is the symmetric group, mapping uij into the characteristic function of the
set f� 2 Sn j �(i) = jg. As in the previous two examples, it is not difficult to check that
As(n) is a liberation of C(Sn).

It can be shown that for n = 1; 2; 3 we have As(n) = C(Sn), but for n � 4 the algebra
As(n) is noncommutative and infinite dimensional.

References. — [4], [8], [9], [29], [55], [63], [82], [87], [89], [90], [94], [95], [97].

1.2. HAAR STATE

Let G be a compact quantum group. For bounded linear functionals !1 and !2

on C(G) define their convolution by

!1 � !2 = (!1 
 !2)�:

When G is a genuine compact group, this gives the usual definition of convolution of
measures on G. The Haar measure � on G is characterized by the property that �� � =

� � � = �(G)� for any complex measure � on G. The following theorem therefore
extends the existence and uniqueness of a normalized Haar measure to the quantum
setting.
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Theorem 1.2.1. — For any compact quantum group G, there exists a unique state h on C(G)

such that

! � h = h � ! = !(1)h for all ! 2 C(G)�:

Proof. — The uniqueness is clear. We will prove the existence in several steps.

Step 1. Let ! be a state on C(G). Then there exists a state h on C(G) such that !�h = h�! = h.

Indeed, take any weak� limit point of the states

1

n

nX
k=1

!�k:

Step 2. If 0 � � � ! and ! � h = h � ! = !(1)h, then � � h = h � � = �(1)h.

We may assume that !(1) = 1. Fix a 2 C(G) and put b = (�
 h)�(a). Then

(h
 !)((�(b)� b
 1)�(�(b)� b
 1))

= (h � !)(b�b)� (h
 !)(�(b)�(b
 1))� (h
 !)((b� 
 1)�(b)) + h(b�b) = 0;

since by coassociativity of � we have

(�
 !)�(b) = (�
 ! � h)�(a) = (�
 h)�(a) = b:

It follows that

(h
 �)((�(b)� b
 1)�(�(b)� b
 1)) = 0:

By the Cauchy-Schwarz inequality we then get

(h
 �)((c
 1)(�(b)� b
 1)) = 0 for all c 2 C(G):

Using this we compute:

(h
 � � h)((c
 1)�(a)) = (h
 �)((c
 1)�(b))

= (h
 �)(cb
 1) = h(cb)�(1)

= �(1)(h
 h)((c
 1)�(a)):

Since (C(G)
1)�(C(G)) is dense in C(G)
C(G), this implies ��h = �(1)h. Similarly,
h � � = �(1)h.

End of proof. For a finite set F = f!1; : : : ; !ng of states on C(G), take

!F =
1

n
(!1 + � � �+ !n):

By Steps 1 and 2 we can find a state hF such that !F � hF = hF � !F = hF , hence
!i�hF = hF �!i = hF for all i. Taking a weak� limit point of the states hF as F increases,
we get the required state h.
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8 CHAPTER 1. COMPACT QUANTUM GROUPS

The state h given by the above theorem is called the Haar state. An equivalent form
of the defining property of h is

(�
 h)�(a) = (h
 �)�(a) = h(a)1 for all a 2 C(G):

We write L2(G) for the Hilbert space of the GNS-representation defined by h.

Example 1.2.2. — If G = �̂ for a discrete group �, so C(G) = C�r (�), then the Haar
state is the canonical trace on C�r (�). The same is true if we take C(G) = C�(�). This
shows that in general the Haar state is not faithful.

References. — [62], [94], [97].

1.3. REPRESENTATION THEORY

We want to define the notion of a representation of a compact quantum group on
a finite dimensional vector space. For this we first have to introduce some notation.

Given a unital algebra A , natural numbers n � m and an injective map
� : f1; : : : ; ng ! f1; : : : ; mg, we can define an obvious embedding A 
n ,! A 
m .
The image of an element X 2 A 
n under this embedding is denoted by Xj1:::jn ,
where ji = �(i). For example, if n = 2 and m = 4, then

(a
 b)31 = b
 1
 a
 1:

This can be slightly generalized by considering embeddings of tensor products of dif-
ferent unital algebras of the form A1 
 � � � 
An ,!B1 
 � � � 
Bm; with B�(i) = Ai .
What is taken for the number m and for the algebras Bj for j =2 Im � is usually clear
from the context. This is called the leg-numbering notation.

Turning to representations, consider first a genuine compact group G. Recall that a
representation of G on a finite dimensional space H is a continuous homomorphism
G! GL(H), g 7! Ug . Identifying the algebra C(G;B(H)) of continuous B(H)-valued
functions on G with B(H)
C(G), we can consider the function g 7! Ug as an element
U 2 B(H) 
 C(G). Then the condition UsUt = Ust for all s; t 2 G can be equivalently
written as (�
 �)(U) = U12U13 . This motivates the following definition.

Definition 1.3.1. — A representation of a compact quantum group G on a finite dimen-
sional vector space H is an invertible element U of B(H)
 C(G) such that

(�
 �)(U) = U12U13 in B(H)
 C(G)
 C(G):

The representation is called unitary if H is a Hilbert space and U is unitary.

COURS SPÉCIALISÉS 20



1.3. REPRESENTATION THEORY 9

We will often denote a representation by one symbol U and write HU for the under-
lying space.

If �1; : : : ; �n is a basis in H , mij the corresponding matrix units in B(H), so mij�k =

�jk�i , then the condition (� 
 �)(U) = U12U13 for U =
P
i;j

mij 
 uij 2 B(H) 
 C(G)

reads as

�(uij) =
nX

k=1

uik 
 ukj :

In particular, the unitaries U = (uij)i;j introduced in Examples 1.1.5-1.1.8 define uni-
tary representations of the corresponding quantum groups. These representations are
called the fundamental representations.

We can obviously take direct sums of representations. We can also define tensor
products.

Definition 1.3.2. — The tensor product of two finite dimensional representations U

and V is the representation U � V on HU 
HV defined by U � V = U13V23 .

Another commonly used notation for the tensor product is U T
 V .

Definition 1.3.3. — Assume U and V are finite dimensional representations. We say
that an operator T : HU ! HV intertwines U and V if

(T 
 1)U = V (T 
 1):

Denote by Mor(U; V ) the space of intertwiners. Representations U and V are called
equivalent if Mor(U; V ) contains an invertible element. Correspondingly, unitary rep-
resentations U and V are called unitarily equivalent if Mor(U; V ) contains a unitary
element.

We write End(U) for Mor(U; U). A representation U is called irreducible if
End(U) = C.

If U is a unitary representation, then End(U) is a C� -algebra. More generally, if T 2
Mor(U; V ) and U and V are unitary, then T � 2 Mor(V; U). This allows us to prove the
following simple, but fundamental, result.

Proposition 1.3.4 (Schur’s lemma). — Two irreducible unitary representations U and V are
either unitarily equivalent and Mor(U; V ) is one-dimensional, or Mor(U; V ) = 0.

Proof. — Assume T : HU ! HV is a nonzero intertwiner. Then T �T 2 End(U) and
TT � 2 End(V ) are nonzero scalars. It follows that up to a scalar factor the operator
T is unitary. If S : HU ! HV is another intertwiner, then T �S 2 End(U) is a scalar
operator, hence S is a scalar multiple of T . Therefore Mor(U; V ) = CT .

The study of finite dimensional representations can be reduced to that of unitary
ones.
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Proposition 1.3.5. — Every finite dimensional representation is equivalent to a unitary repre-
sentation.

Proof. — Let U be a finite dimensional representation. Take any Hilbert space struc-
ture on HU . Consider the operator

Q = (�
 h)(U�U) 2 B(HU ):

Since U is invertible, U�U � "1 for some " > 0, hence Q � "1.
We have

(�
 �)(U�U) = U�13U
�
12U12U13:

Applying �
 h
 � and using that (h
 �)�(�) = h(�)1, we get

Q
 1 = U�(Q
 1)U:

Therefore
V = (Q1=2 
 1)U(Q�1=2 
 1)

is a unitary representation of G on HU , and Q1=2 2 Mor(U; V ).

Remark 1.3.6. — The same computation as in the above proof gives the following re-
sult, which we will need several times later. Suppose we have elements U 2 B(HU ) 


C(G) and V 2 B(HV )
C(G) such that (�
�)(U) = U12U13 and (�
�)(V ) = V12V13 .
Let S : HU ! HV be a linear operator. Define

T = (�
 h)(V �(S 
 1)U) 2 B(HU ; HV ):

Then V �(T 
 1)U = T 
 1. In particular, if U and V are unitary, then T 2 Mor(U; V ).
Similarly, if we put T = (�
 h)(V (S 
 1)U�), then V (T 
 1)U� = T 
 1.

Theorem 1.3.7. — Every finite dimensional representation is a direct sum of irreducible repre-
sentations.

Proof. — Let U be a finite dimensional representation. We may assume that U is uni-
tary. Then End(U) is a C� -algebra. Let e1; : : : ; en be minimal projections in End(U)

that add up to 1. Then (ei 
 1)U are irreducible representations of G on eiH , and
their direct sum is U .

Next we want to define contragredient representations. If G is a group and g 7! Ug
is a representation of G on H , then the contragredient representation is the represen-
tation U c on the dual space H� defined by (U c

gf)(�) = f(U�1
g �) for f 2 H� and � 2 H .

When H is a Hilbert space, we identify H� with the complex conjugate Hilbert space
�H . In this case, if U is unitary, then U c is also unitary. As we will see, the analogous

property for quantum groups is, in general, not true.
Assume now that G is a compact quantum group and U 2 B(H) 
 C(G) is a finite

dimensional representation. Consider the dual space H� and denote by j : B(H) !
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B(H�) the map that sends an operator to the dual operator. We will use the same sym-
bol j for all spaces, so that in particular j2 is well-defined and equals the identity map.
If H is a Hilbert space, so that H� = �H , then j(T )�� = T ��. Note that in this case j is a
�-anti-homomorphism.

Definition 1.3.8. — The contragredient representation to a representation U is the
representation U c on the dual space defined by

U c = (j 
 �)(U�1) 2 B(H�)
 C(G):

It is by no means obvious that U c is indeed a representation: the problem is to show
that the element U c is invertible.

Note that if U is unitary and U is written as a matrix (uij)i;j with respect to an or-
thonormal basis in H , then U c = (u�ij)i;j with respect to the dual basis in �H . In par-
ticular, we can now fully understand where the assumptions of Proposition 1.1.4 come
from.

Returning to general U , observe that as (� 
 �)(U�1) = U�1
13 U�1

12 and j is an anti-
homomorphism, we have (�
�)(U c) = U c

12U
c
13: But in order to show that U c is invert-

ible we need some preparation.

Proposition 1.3.9. — Assume U 2 B(H) 
 C(G) is a finite dimensional unitary representa-
tion. Consider the space

B = f(�
 h)(U(1
 a)) j a 2 C(G)g � B(H):

Then B is a �-subalgebra of B(H) containing the unit of B(H), and U 2 B 
 C(G).

Proof. — For a 2 C(G) put L(a) = (�
 h)(U(1
 a)) 2 B(H). We have

U�12(�
 �)(U(1
 a)) = U13(1
 �(a)):

Applying �
 �
 h we get

(1.3.1) U�(L(a)
 1) = (�
 �
 h)(U13(1
 �(a))):

Since L(b)� = (�
h)((1
b�)U�), multiplying the above identity by 1
b� and applying
�
 h we get

L(b)�L(a) = (�
 h
 h)(U13(1
 (b� 
 1)�(a))):

This shows that L(b)�L(a) 2 B for any a; b 2 C(G) and furthermore, since the space
(C(G) 
 1)�(C(G)) is dense in C(G) 
 C(G), that B is spanned by elements of this
form. Hence B is self-adjoint, so it consists of the elements L(b)� , and therefore B is a
�-algebra.

Since U(B(H)
 C(G)) = B(H)
 C(G), we have B � B(H) = B(H). Therefore the
representation of B on H is nondegenerate. Hence B contains the identity operator.

From (1.3.1) we see then that U� belongs to B 
 C(G), so U 2 B 
 C(G).
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As U 2 B 
 C(G), by definition of B we conclude that End(U) is the commutant
of B in B(H). It follows that U is irreducible if and only if B = B(H).

Corollary 1.3.10. — Assume U 2 B(H) 
 C(G) is an irreducible finite dimensional unitary
representation. Then (X 
 1)U(Y 
 1) 6= 0 for any nonzero elements X; Y 2 B(H).

Proof. — If (X
1)U(Y 
1) = 0, then XBY = 0. Since B = B(H), this is possible only
when X = 0 or Y = 0.

We are now ready to prove that U c is indeed a representation.

Proposition 1.3.11. — For any representation U on a finite dimensional space H the element
U c 2 B(H�)
 C(G) is invertible.

Proof. — Unitarizing and decomposing the representation into irreducibles, we may
assume that U is unitary and irreducible. Consider the positive operators

Q` = (�
 h)(U cU c�) and Qr = (�
 h)(U c�U c)

in B( �H). By Remark 1.3.6 we have

(1.3.2) Q` 
 1 = U c(Q` 
 1)U c� and Qr 
 1 = U c�(Qr 
 1)U c:

Therefore in order to prove that U c is invertible it suffices to show that Q` and Qr are
invertible.

Let us show first that Q` 6= 0. For this we compute the trace of Q` :

Tr(Q`) = (Tr
h)(U cU c�) = (Tr
h)((j 
 �)(U�)(j 
 �)(U))

= (Tr
h)(U�U) = dimH;

where we used that Tr(j(X)j(Y )) = Tr(j(YX)) = Tr(YX) = Tr(XY ).
Let p 2 B( �H) be the projection onto the kernel of Q` . From (1.3.2) we get

(p
 1)U c(Q` 
 1)U c�(p
 1) = 0;

whence (Q1=2
` 
 1)U c�(p
 1) = 0, or in other words,

(Q1=2
` 
 1)(j 
 �)(U)(p
 1) = 0:

Hence (j(p)
 1)U(j(Q1=2
` )
 1) = 0. Since Q` 6= 0, by Corollary 1.3.10 this is possible

only when p = 0. Therefore Q` is invertible. Similarly one proves that Qr is invertible.

Let U 2 B(H)
 C(G) be an irreducible finite dimensional unitary representation.
In the proof of the previous proposition we introduced positive invertible operators
Q`; Qr 2 B( �H) by

Q` = (�
 h)(U cU c�) and Qr = (�
 h)(U c�U c):

We shall now investigate their properties.
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Lemma 1.3.12. — We have:

(i) j(Q`) 2 Mor(U cc; U) and j(Qr) 2 Mor(U; U cc);

(ii) Q`Qr is a scalar;

(iii)Tr(Q`) = Tr(Qr) = dimHU .

Proof. — (i) As we have already used in the proof of Proposition 1.3.11, by Re-
mark 1.3.6 we have

U c(Q` 
 1)U c� = Q` 
 1 and U c�(Qr 
 1)U c = Qr 
 1:

Multiplying the first equality by (U c)�1 on the left we get

(Q` 
 1)(j 
 �)(U) = (U c)�1(Q` 
 1):

Therefore applying j 
 � we obtain

U(j(Q`)
 1) = (j(Q`)
 1)U cc:

Thus j(Q`) 2 Mor(U cc; U). Similarly one shows that j(Qr) 2 Mor(U; U cc).

(ii) Since U is irreducible and j(Q`)j(Qr) 2 End(U) by (i), the operator j(Q`)j(Qr)

is a scalar.

(iii) That Tr(Q`) = dimHU was shown in the proof of Proposition 1.3.11. The equal-
ity Tr(Qr) = dimHU is proved similarly.

Remark 1.3.13. — The proof of (i) shows that for any finite dimensional unitary rep-
resentation U and an operator Q 2 B(HU ), we have Q 2 Mor(U cc; U) if and only if
U c(j(Q)
1)U c� = j(Q)
1. Similarly, Q 2 Mor(U; U cc) if and only if U c�(j(Q)
1)U c =

j(Q)
 1.

Let us now list properties of the contragredient representation.

Proposition 1.3.14. — For any finite dimensional representations we have:

(i) U cc is equivalent to U ;

(ii) U c is irreducible if and only if U is irreducible;

(iii)the flip map H�U 
H
�
V ! H�V 
H

�
U defines an equivalence between (U�V )c and V c�U c .

Proof. — Part (i) for irreducible representations follows from Lemma 1.3.12(i). By de-
composing representations into irreducible, we get the result in general. Part (ii) is
true since T 2 End(U) if and only if j(T ) 2 End(U c). Part (iii) follows immediately
from our definitions.

References. — [62], [94], [97].
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1.4. QUANTUM DIMENSION AND ORTHOGONALITY RELATIONS

Let U be an irreducible finite dimensional unitary representation of a compact
quantum group G. By irreducibility and Lemma 1.3.12(i) the space Mor(U; U cc) is one-
dimensional, spanned by a unique up to a scalar factor positive invertible operator.
Denote by �U 2 B(HU ) this unique operator normalized so that Tr(�U ) = Tr(��1

U ).

Definition 1.4.1. — The quantum dimension of U is the number

dimq U = Tr(�U ):

Since dimHU � Tr(X)1=2 Tr(X�1)1=2 for any X > 0 by the Cauchy-Schwarz in-
equality, we have dimq U � dimHU , and equality holds if and only if �U = 1. We
will write dimU for dimHU . As follows from results of the previous section, and will
be discussed shortly, we have �U = 1 if and only if U c is unitary. Therefore the ratio
dimq U=dimU � 1 in some sense measures how far the contragredient representation
is from being unitary.

Example 1.4.2. — Let G be any of the quantum groups introduced in Examples 1.1.5-
1.1.7, and U = (uij)i;j be its fundamental representation. It can be shown that
this representation is irreducible (we will prove this later for SUq(2) and Ao(F )).
In all these examples we are given a matrix F such that FU cF�1 is unitary and
Tr(F �F ) = Tr((F �F )�1). Therefore (F�1)�U c�F �FU cF�1 = 1, so by Remark 1.3.13
we have j(F �F ) = (F �F )t 2 Mor(U; U cc). Thus

�U = (F �F )t:

In particular, for G = SUq(2) we have F =

 
0 ��

��1 0

!
, with �2 = q . Hence

�U =

 
jqj�1 0

0 jqj

!

and dimq U = jq + q�1j.

We extend the quantum dimension to all finite dimensional representations by ad-
ditivity. The name ‘dimension’ is justified by the properties that we are now going to
establish, see also Section 2.2.

Somewhat more explicitly dimq U for irreducible unitary representations is defined
as follows. Consider the operators Q`; Qr 2 B( �HU ) defined by

Q` = (�
 h)(U cU c�) and Qr = (�
 h)(U c�U c):
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By Lemma 1.3.12, j(Qr) 2 Mor(U; U cc), Q`Qr is a scalar operator �1 and Tr(Q`) =

Tr(Qr) = dimU . It follows that

�U = ��1=2j(Qr); ��1
U = ��1=2j(Q`); dimq U = ��1=2 dimU:

Note that, conversely, Qr and Q` are expressed in terms of �U by

(1.4.1) Qr =
dimU

dimq U
j(�U ) and Q` =

dimU

dimq U
j(��1

U ):

Theorem 1.4.3 (Orthogonality relations). — Let U = (uij)i;j be an irreducible unitary rep-
resentation written in matrix form with respect to an orthonormal basis in HU , and let � = �U .
Then

(i) h(uklu
�
ij) =

�ki�jl
dimq U

and h(u�ijukl) =
�jl(�

�1)ki
dimq U

;

(ii) if V = (vkl)k;l is an irreducible unitary representation that is not equivalent to U , then
h(vklu

�
ij) = h(u�ijvkl) = 0:

Proof. — (i) For any T 2 B(HU ), by Remark 1.3.6 we have (� 
 h)(U(T 
 1)U�) 2

End(U) = C1. Therefore there exists a unique positive operator �r 2 B(HU ) such that

(1.4.2) Tr(�rT )1 = (�
 h)(U(T 
 1)U�) for all T 2 B(HU ):

Taking the trace and using that Tr(XYZ) = Tr(YZX) = Tr(j(X)j(Z)j(Y )), we get that

(dimU) Tr(�rT ) = (Tr
h)(U(T 
 1)U�)

= (Tr
h)((j 
 �)(U)(j 
 �)(U�)(j(T )
 1))

= (Tr
h)(U c�U c(j(T )
 1))

= Tr(Qrj(T )) = Tr(j(Qr)T ):

Therefore, by (1.4.1), we have

(1.4.3) �r =
j(Qr)

dimU
=

�

dimq U
:

As one can now easily check, identity (1.4.2) applied to T = mlj gives the first equality
in (i). The second equality is proved similarly, by showing that

Tr(��1T )

dimq U
1 = (�
 h)(U�(T 
 1)U) for all T 2 B(HU ):

(ii) Using again Remark 1.3.6 and that Mor(V; U) = 0 and Mor(U; V ) = 0, we get that

(�
 h)(V (S 
 1)U�) = 0 and (�
 h)(U�(T 
 1)V ) = 0

for all S : HU ! HV and T : HV ! HU . This is equivalent to the identities in (ii).

In order to study properties of the quantum dimension we need to define the oper-
ators �U for all unitary representations.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



16 CHAPTER 1. COMPACT QUANTUM GROUPS

Proposition 1.4.4. — Let U be a finite dimensional unitary representation. Then there exists a
unique positive invertible operator � 2 Mor(U; U cc) such that

Tr(� �) = Tr(� ��1) on End(U) � B(HU ):

Proof. — There exist pairwise nonequivalent irreducible unitary representations Ui ,
1 � i � n, such that U decomposes into a direct sum of copies of Ui . In other words,
we may assume that HU = �i(Ki
HUi) for some finite dimensional Hilbert spaces Ki ,
and U = �i(1 
 Ui). In this case End(U) = �i(B(Hi) 
 1). From this we see that the
operator � = �i(1
 �Ui) has the required properties.

Assume �0 2 B(HU ) is another positive invertible operator with the same properties.
Then ��1�0 2 End(U), so �0 = �i(Ti 
 �Ui) for some positive invertible operators Ti 2
B(Ki). Then Tr(� Ti) = Tr(� T�1

i ) on B(Ki). Hence Ti = T�1
i , and so Ti = 1, as Ti are

positive. Therefore �0 = �.

We denote by �U 2 B(HU ) the unique operator given by the above proposition. By
definition we have dimq U = Tr(�U ).

As follows from Remark 1.3.13, a positive invertible operators � 2 B(HU ) belongs
to Mor(U; U cc) if and only if the operator

(j(�)1=2 
 1)U c(j(�)�1=2 
 1)

is unitary.

Definition 1.4.5. — For a finite dimensional unitary representation U the conjugate
representation is defined by

�U = (j(�U )1=2 
 1)U c(j(�U )�1=2 
 1) 2 B( �HU )
 C(G):

The conjugate representation is therefore a canonical unitary form of the contra-
gredient representation.

Note that the contragredient representation U c is unitary if and only if �U = 1. In-
deed, if �U = 1, then U c = �U , so U c is unitary. Conversely, if U c is unitary, then V c is
unitary for any irreducible unitary subrepresentation V of U . Since by construction �V
is a scalar multiple of (j 
 h)(V c�V c), it follows that �V = 1. Since this is true for all
subrepresentations V , we get �U = 1 by construction of �U .

Note also that if � 2 Mor(U; U cc) is positive and invertible, then by the proof of
Proposition 1.4.4 we have � = �UT for some T 2 End(U) commuting with �U . Hence

�U = (j(�)1=2 
 1)U c(j(�)�1=2 
 1):

Using this and the property �U�V = �U � �V , which follows by construction, it is easy
to check the following properties of the conjugate representation.
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Proposition 1.4.6. — For any finite dimensional unitary representations we have:

(i) ��U = U ;

(ii) U � V = �U � �V ;

(iii)the flip �HU 
 �HV ! �HV 
 �HU defines an equivalence between U � V and �V � �U .

In order to compute the quantum dimensions of �U and U � V we, however, need
to find � �U and �U�V explicitly.

Proposition 1.4.7. — For any finite dimensional unitary representation U we have � �U =

j(�U )�1 . In particular, dimq �U = dimq U .

Proof. — Since �V1�V2
= �V1

� �V2
, it suffices to consider irreducible representations.

We have

( �U)c = (j 
 �)( �U)� = (j 
 �)((j(�U )�1=2 
 1)U c�(j(�U )1=2 
 1))

= (�1=2
U 
 1)(j 
 �)(U c�)(��1=2

U 
 1) = (�1=2
U 
 1)U(��1=2

U 
 1):

Thus (��1=2
U 
 1)( �U)c(�1=2

U 
 1) is unitary. As we remarked after the proof of Proposi-
tion 1.4.4, this is equivalent to j(�U )�1 2 Mor( �U; ( �U)cc). Since Tr(�U ) = Tr(��1

U ), we
conclude that � �U = j(�U )�1 .

In order to deal with tensor products we introduce auxiliary states on B(HU ) by

'U =
Tr(� ��1

U )

dimq U
;  U =

Tr(� �U )

dimq U
:

By definition of �U we have 'U =  U on End(U).

Lemma 1.4.8. — For any finite dimensional unitary representations U and V we have

('U 
 �)(End(U � V )) � End(V ) and (�
  V )(End(U � V )) � End(U):

Proof. — We will only prove the second inclusion, the first one is proved similarly. We
claim that

(1.4.4) ( V 
 �)(V (S 
 1)V �) =  V (S)1 for any S 2 B(HV ):

It suffices to show this assuming that V is irreducible. In this case, by (1.4.2) and (1.4.3),
we have that

(�
 h)(V (S 
 1)V �) =  V (S)1:

Hence

( V 
 �)(V (S 
 1)V �) = ( V 
 h
 �)(V12V13(S 
 1
 1)V �13V
�

12)

= ( V 
 h
 �)((�
 �)(V )(S 
 1
 1)(�
 �)(V �))

= ( V 
 h)(V (S 
 1)V �)1 =  V (S)1;

and (1.4.4) is proved.
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18 CHAPTER 1. COMPACT QUANTUM GROUPS

Therefore, if T 2 End(U � V ), then

U((�
  V )(T )
 1)U� = (�
  V 
 �)(U13(T 
 1)U�13)

= (�
  V 
 �)(U13V23(T 
 1)V �23U
�
13)

= (�
  V 
 �)((U � V )(T 
 1)(U � V )�)

= (�
  V 
 �)(T 
 1) = (�
  V )(T )
 1;

so (�
  V )(T ) 2 End(U).

Theorem 1.4.9. — For any finite dimensional unitary representations U and V we have
�U�V = �U 
 �V . In particular, dimq(U � V ) = dimq U � dimq V .

Proof. — We will use the criterion from Proposition 1.4.4. The only nontrivial property
to check is that Tr(� �U 
 �V ) = Tr(� ��1

U 
 ��1
V ) on End(U � V ), that is,

 U 
  V ='U 
 'V on End(U � V ):

If T 2 End(U � V ), then using Lemma 1.4.8 and that  U = 'U on End(U), we get

( U 
  V )(T ) =  U (�
  V )(T ) = 'U (�
  V )(T ) = ('U 
  V )(T ):

Similarly, ('U 
 'V )(T ) = 'V ('U 
 �)(T ) = ('U 
  V )(T ).

References. — [59], [94], [97].

1.5. INFINITE DIMENSIONAL REPRESENTATIONS

So far we have dealt only with finite dimensional representations. However, the only
known way to show that there exist many such representations is by decomposing infi-
nite dimensional representations.

For a Hilbert space H we denote by K(H) the C� -algebra of compact operators
on H . Recall also that for a C� -algebra A the multiplier algebra of A is denoted
by M(A). If A � B(H) and AH is dense in H , then M(A) can be identified with the
C� -subalgebra of B(H) consisting of the operators T 2 B(H) such that Ta 2 A and
aT 2 A for all a 2 A.

Definition 1.5.1. — A unitary representation of a compact quantum group G on a
Hilbert space H is a unitary element U 2 M(K(H)
 C(G)) such that

(�
 �)(U) = U12U13:

Our goal is to construct a representation of G on L2(G) that coincides with the right
regular representation in the group case. Recall that L2(G) denotes the underlying
space of the GNS-representation �h of C(G) defined by the Haar state h. Write �(a)
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for a 2 C(G) considered as a vector in L2(G). We will often suppress �h in the compu-
tations. Therefore a�(b) = �h(a)�(b) = �(ab).

Let us first consider the group case. The right regular representation g 7! Wg of
a compact group G is defined by (Wsf)(t) = f(ts) for f 2 L2(G). The multiplier
algebra M(K(L2(G))
C(G)) can be identified with the algebra of strongly� operator
continuous functions G ! B(L2(G)). Therefore the operators Wg define a unitary
W 2 M(K(L2(G)) 
 C(G)); so we indeed have a representation of G in the sense of
the above definition. Note that for f1 2 C(G), f2 2 L2(G) and s; t 2 G we have

(W (f1 
 f2))(s; t) = (Wtf1)(s)f2(t) = f1(st)f2(t) = (�(f1)(1
 f2))(s; t):

This motivates the following construction.

Theorem 1.5.2. — For any compact quantum group G, there exists a unique unitary represen-
tation W of G on the space L2(G) such that if C(G) � B(H0), then

W (�(a)
 �) = �(a)(�(1)
 �) for all a 2 C(G) and � 2 H0:

Proof. — We divide the proof into several steps. Assume C(G) � B(H0). Let us also as-
sume that the representation of C(G) on H0 is universal, in the sense that any bounded
linear functional ! on C(G) has the form ! = !�;� for some �; � 2 H0 , where !�;�(T ) =

(T�; �).

Step 1. The equality in the formulation defines an isometry W on L2(G)
H0 .

Write �h for �(1). For ai 2 C(G) and �i 2 H0 , 1 � i � n, we have



X
i

�(ai)(�h 
 �i)





2

=
X
i;j

(�(a�j ai)(�h 
 �i); �h 
 �j)

=
X
i;j

((h
 �)�(a�j ai)�i; �j)

=
X
i;j

(h(a�j ai)�i; �j)

=





X
i

�(ai)
 �i





2

:

Hence W is a well-defined isometry.

Step 2. The operator W is unitary.

Indeed, the image of W contains all vectors of the form �(a)(1
 b)(�h
 �), so it is
dense by the cancellation property.

Step 3. We have W 2 M(K(L2(G))
 C(G)).
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We have to show that W (T
1); W �(T
1) 2 K(L2(G))
C(G) for any T 2 K(L2(G)).
It suffices to consider T = �a�h;� , where ��;�� = (�; �)�. We have

W (�a�h;� 
 1)(�
 �) = W ((�; �)a�h 
 �) = (�; �)�(a)(�h 
 �)

= �(a)(��h;� 
 1)(�
 �):

If
P

i ai 
 bi is close to �(a), we see that W (�a�h;� 
 1) is close to
P
i
�ai�h;� 
 bi . Thus

W (T 
 1) 2 K(L2(G))
 C(G).

Turning to W �(T
1), assume that
P

i �(ai)(1
bi) is close to a
1. Then the identityX
i
W ��(ai)(1
 bi)(��h;� 
 1)(�
 �) = (�; �)

X
i
W ��(ai)(�h 
 bi�)

= (�; �)
X
i
ai�h 
 bi� =

�X
i
�ai�h;� 
 bi

�
(�
 �)

shows that W �(�a�h;�
1) = W �(a
1)(��h;�
1) is close in norm to
P

i �ai�h;�
bi . Hence
W �(T 
 1) 2 K(L2(G))
 C(G).

Step 4. We have (�
 �)(W ) = W12W13 .

For a 2 C(G) and ! 2 C(G)� define

! � a = (�
 !)�(a) 2 C(G):

Then, since ! = !�;� for some �; � 2 H0 , by definition of W we have

(�
 !)(W )a�h = (! � a)�h:

Therefore

(�
 !
 �)(�
 �)(W )a�h = (�
 ! � �)(W )a�h = ((! � �) � a)�h;

and

(�
 !
 �)(W12W13)a�h = (�
 !)(W )(�
 �)(W )a�h = (! � (� � a))�h:

Hence (�
 �)(W ) = W12W13 by the coassociativity of �.

End of proof. If C(G) is represented faithfully on another Hilbert space ~H0 , then the
above arguments show that we can define a unitary ~W 2 M(K(L2(G)) 
 C(G)) such
that ~W (�(a)
�) = �(a)(�(1)
�) for all a 2 C(G) and � 2 ~H0 . Then (�
!)( ~W )a�h =

(!�a)�h for any ! 2 C(G)� that extends to a normal linear functional on B( ~H0). Hence
(�
!)( ~W ) = (�
!)(W ) for all such !, so ~W = W . Alternatively, we can give a space-
free definition of W : it is an operator on the Hilbert C(G)-module L2(G)
C(G) such
that W (a�h 
 1) = �(a)(�h 
 1):

The representation W is called the right regular representation of G.
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Theorem 1.5.3. — For the right regular representation W of a compact quantum group G we
have:

(i) the space f(!
 �)(W ) j ! 2 K(L2(G))�g is dense in C(G);

(ii) W (�h(a)
 1)W � = (�h 
 �)�(a) for all a 2 C(G).

Proof. — Assume C(G) � B(H0), so W (a�h 
 �) = �(a)(�h 
 �) for a 2 C(G).

(i) Recall that we denote by !�;� the linear functional defined by !�;�(T ) = (T�; �). For
any a; b 2 C(G) and �; � 2 H we have

((!a�h;b�h 
 �)(W )�; �) = (W (a�h 
 �); b�h 
 �)

= (�(a)(�h 
 �); b�h 
 �)

= ((h
 �)((b� 
 1)�(a))�; �);

so
(!a�h;b�h 
 �)(W ) = (h
 �)((b� 
 1)�(a)):

Since (A
 1)�(A) is dense in C(G)
 C(G), we see that (i) holds.

(ii) For any a; b 2 C(G) we have

W (a
 1)(b�h 
 �) = W (ab�h 
 �) = �(ab)(�h 
 �) = �(a)W (b�h 
 �);

so W (�h(a)
 1) = (�h 
 �)(�(a))W .

The following theorem extends Theorem 1.3.7 to infinite dimensional representa-
tions.

Theorem 1.5.4. — Every unitary representation decomposes into a direct sum of finite dimen-
sional irreducible unitary representations.

Proof. — It is enough to show that any unitary representation

U 2 M(K(H)
 C(G))

decomposes into a direct sum of finite dimensional representations. For S 2 K(H),
consider the operator

T = (�
 h)(U�(S 
 1)U) 2 K(H):

Remark 1.3.6 applies also to infinite dimensional representations, so

U�(T 
 1)U = T 
 1;

that is, T 2 End(U). If we take a net of finite rank projections pi 2 B(H) such that pi %
1 strongly, then (�
h)(U�(pi
1)U)% 1 strongly as well, since for any finite rank pro-
jection p we have U�(pi
1)U(p
1)! U�U(p
1) = p
1 in norm. Therefore K(H)\

End(U) is a nondegenerate C� -algebra of compact operators on H . Hence H decom-
poses into a direct sum H = �jejH for some finite rank projections ej 2 End(U).
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For a unitary representation U 2 M(K(H) 
 C(G)), the elements (!�;� 
 �)(U) 2

C(G) for �; � 2 H are called the matrix coefficients of U .

Corollary 1.5.5. — The linear span of matrix coefficients of finite dimensional representations
of G is dense in C(G).

Proof. — Consider the right regular representation W 2 M(K(L2(G)) 
 C(G)). De-
compose it into a direct sum of irreducible unitary representations:

L2(G) = �iHi; W = �iUi:

If � 2 Hi and � 2 Hj , then for !�;� = (� �; �) we have

(!�;� 
 �)(W ) =

(
0; if i 6= j;

(!�;� 
 �)(Ui); if i = j:

Since such functionals !�;� span a dense subspace in K(L2(G))� and

f(!
 �)(W ) j ! 2 K(L2(G))�g

is dense in C(G) by Theorem 1.5.3, we see that the linear span of matrix coefficients
of finite dimensional representations of G is dense in C(G).

A decomposition of the regular representation into irreducible representations can
be described explicitly as follows. If U is an irreducible finite dimensional unitary rep-
resentation, then for every vector � 2 HU we can define a map

HU ! L2(G); � 7! (dimq U)1=2(!
�;�1=2

U �

�)(U):

It is easy to check that it intertwines U and W . By the orthogonality relations it is iso-
metric if � is a unit vector. Furthermore, by the same relations, if we take mutually or-
thogonal vectors � and �0 in HU , then the corresponding images of HU in L2(G) will be
orthogonal. The space spanned by such images for all possible U (up to equivalence) is
precisely the dense subspace of L2(G) spanned by matrix coefficients of finite dimen-
sional representations. So we obtain a decomposition of W by fixing representatives
U of equivalence classes of irreducible finite dimensional unitary representations and
choosing orthonormal bases in HU . In particular, every irreducible unitary represen-
tation U appears in W with multiplicity dimU .

References. — [97].
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1.6. HOPF �-ALGEBRA OF MATRIX COEFFICIENTS

For a compact quantum group G denote by C[G] � C(G) the linear span of matrix
coefficients of all finite dimensional representations of G. This is a dense unital �-sub-
algebra of C(G): the product of matrix coefficients is a matrix coefficient of the ten-
sor product representation, the adjoint of a matrix coefficient is a matrix coefficient
of the contragredient representation, and the density was proved in Corollary 1.5.5.
Furthermore, �(C[G]) is contained in the algebraic tensor product C[G] 
 C[G] �

C(G)
 C(G).

Definition 1.6.1. — A pair (A ;�) consisting of a unital �-algebra and a unital �-homo-
morphism �: A ! A 
 A is called a Hopf �-algebra, if (� 
 �)� = (� 
 �)� and
there exist linear maps " : A ! C and S : A ! A such that

("
 �)�(a) = (�
 ")�(a) = a and m(S 
 �)�(a) = m(�
 S)�(a) = "(a)1

for all a 2 A , where m : A 
A ! A is the multiplication map.

The map " is called counit and S is called antipode, or coinverse.

Example 1.6.2. — Assume G is a compact group. Then C[G] with the usual comulti-
plication, �(f)(g; h) = f(gh), is a Hopf �-algebra, with "(f) = f(e) and S(f)(g) =

f(g�1).

Example 1.6.3. — Assume � is a discrete group and let G = �̂, so C(G) = C�r (�) and
�(�
) = �

 �
 . The elements �
 2 C�r (�) are one-dimensional representations of G,
and since they already span a dense subspace of C(G), from the orthogonality relations
we conclude that there are no other irreducible representations. Therefore C[G] �

C�r (�) is the group algebra of �, spanned by the operators �
 . This is a Hopf �-algebra,
with "(�
) = 1 and S(�
) = �
�1 .

Let us list a number of properties of the maps " and S that follow from the axioms:

(a) " and S are uniquely determined;

(b) "S = ";

(c) " is a �-homomorphism and S is an anti-homomorphism;

(d) �S = (S 
 S)�op ;

(e) S(S(a�)�) = a for all a 2 A .

We are not going to prove this, see for example [84]. Properties (b)-(e) will be obvious
in our examples.

Theorem 1.6.4. — For any compact quantum group G, the pair (C[G];�) is a Hopf �-algebra.
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Proof. — We define the linear maps " and S by letting

(�
 ")(U) = 1 and (�
 S)(U) = U�1

for any finite dimensional representation U of G. To see that such maps indeed ex-
ist, choose representatives U� of equivalence classes of irreducible finite dimensional
unitary representations. By the orthogonality relations the matrix coefficients u�ij of
these representations with respect to fixed orthonormal bases in HU� form a linear ba-
sis in C[G]. Therefore we can define "(u�ij) = �ij and S(u�ij) = u��ji . Since any finite
dimensional representation U is equivalent to a direct sum of copies of U� , we then
get (�
 ")(U) = 1 and (�
 S)(U) = U�1 .

By applying � 
 " 
 � to (� 
 �)(U) = U12U13 we get (" 
 �)� = �, and by applying
�
 �
 " we get (�
 ")� = �. On the other hand, by applying (�
 m)(�
 S 
 �) we get

(�
 m)(�
 S 
 �)(�
 �)(U) = (�
 m)(U�1
12 U13) = U�1U = 1 = (�
 "(�)1)(U);

so m(S 
 �)� = "(�)1. Similarly, m(�
 S)� = "(�)1.

Although it took us a lot of effort to construct the Hopf �-algebra (C[G];�) for a
compact quantum group G, in practice (C[G];�) is often known from the beginning
and C(G) is defined as a C� -completion of C[G]. It is therefore important to have a
characterization of Hopf �-algebras that arise from compact quantum groups. We will
need a few definitions to formulate the result.

Definition 1.6.5. — A corepresentation of a Hopf �-algebra (A ;�) on a vector space
H is a linear map � : H ! H 
A such that

(�
 �)� = (�
 �)� and (�
 ")� = �:

The corepresentation is called unitary if H is a Hilbert space and

h�(�); �(�)i = (�; �)1 for all �; � 2 H;

where h�; �i is defined by h�
 a; �
 bi = (�; �)b�a 2 A .
A subspace K � H is called invariant if �(K) � K 
 A . The corepresentation is

called irreducible if there are no proper invariant subspaces.

If � : H ! H 
A is a corepresentation on a finite dimensional space, then �(�) =

U(�
 1) for a uniquely defined element U 2 B(H)
A . Namely, if f�igni=1 is a basis
in H and �(�j) =

P
i �i 
 uij , then U =

P
i;j mij 
 uij . Furthermore, we have

(�
 �)(U) = U12U13 and (�
 ")(U) = 1:

Conversely, any element U 2 B(H)
A with the above properties defines a corepre-
sentation, so from now on we will use both pictures interchangeably. In particular, by
matrix coefficients of � we mean the matrix coefficients of U .
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All our principal results on finite dimensional representations of compact quantum
groups can be extended to finite dimensional corepresentations of Hopf �-algebras.
Moreover, as we will see now, the proofs become easier due to the existence of the an-
tipode.

Applying � 
 m(� 
 S) and � 
 m(S 
 �) to (� 
 �)(U) = U12U13 we see that U is
invertible and (�
 S)(U) = U�1 .

Unitarity of � is equivalent to U�U = 1, but since U is invertible, this is the same as
unitarity of U . In particular, we see that a finite dimensional unitary corepresentation
of (C[G];�) is the same thing as a finite dimensional unitary representation of G.

If � is irreducible, then there are no nonscalar operators T 2 B(H) such that T 
 1

commutes with U , since any eigenspace of such an operator would be an invariant sub-
space of H . Therefore for (C[G];�) the notion of irreducibility of corepresentations
is formally stronger than the notion of irreducibility of representations of G. The two
notions nevertheless coincide, since a subspace K � H is invariant if and only if it is
invariant for the subalgebra of B(H) spanned by the operators (�
!)(U), ! 2 C[G]� ,
and as we remarked after Proposition 1.3.9 for irreducible representations this algebra
coincides with B(H).

Lemma 1.6.6. — For any corepresentation � : H ! H 
A , finite or infinite dimensional, we
have H 
A = �(H)(1
A ).

Proof. — Consider the linear maps s; r : H 
A ! H 
A defined by

s(�
 a) = (�
 S)�(�)(1
 a); r(�
 a) = �(�)(1
 a):

We claim that rs = �. Since both maps are rightA -module maps, it suffices to compute
rs on �
 1. We have

rs(�
 1) = r((�
 S)�(�)) = (�
 m(�
 S))(�
 �)�(�)

= (�
 m(�
 S))(�
 �)�(�)

= (�
 "(�)1)�(�) = �
 1:

Therefore rs = �, so r is surjective. It is also easy to check that r is injective, but we do
not need this.

This lemma implies in particular that if � is unitary and K � H is a closed invariant
subspace, then K? is also invariant. Indeed, for � 2 K? , � 2 K and a 2 A we have

h�(�); �(�)(1
 a)i = (�; �)a� = 0:

Since �(K)(1 
 A ) = K 
 A , we therefore get h�(�); � 
 1i = 0 for all � 2 K , but
this exactly means that �(�) 2 K? 
A . It follows that any finite dimensional unitary
corepresentation decomposes into a direct sum of finite dimensional irreducible uni-
tary corepresentations.
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The same conclusion can also be obtained by the following argument, which we will
be important later. Consider the dual space U = A � . This is a unital �-algebra with
product and involution given by

!� = (!
 �)�; !� = �!S;

and with unit "; here �! is defined by �!(a) = !(a�). Any finite dimensional corepre-
sentation U 2 B(H)
A defines a unital representation �U : U ! B(H) by �U (!) =

(� 
 !)(U). A subspace K � H is invariant for � if and only if it is �U (U )-invariant.
Now, if U is unitary, then �U is a �-representation, since

�U (!)� = (�
 !)(U)� = (�
 �!)(U�)

and U� = (�
 S)(U). Hence, if K � H is �U (U )-invariant, then K? is also �U (U )-in-
variant.

We are now ready to formulate and prove a characterization of the Hopf �-algebras
(C[G];�).

Theorem 1.6.7. — Assume (A ;�) is a Hopf �-algebra such that A is generated as an al-
gebra by matrix coefficients of finite dimensional unitary corepresentations. Then (A ;�) =

(C[G];�) for a compact quantum group G.

Proof. — Consider the C� -enveloping algebra A of A . It is well-defined, since A is
generated by matrix coefficients of unitary matrices over A , and these have universal
bounds on the norms for all possible �-representations on Hilbert spaces. The crux of
the matter is to show that the canonical homomorphism A ! A is injective. For this
we will show that there exists a faithful state h on A that plays the role of the Haar
state. We will construct h in several steps.

Step 1. There exists a unique linear functional h such that h(1) = 1, (� 
 h)�(a) = h(a)1

and (h
 �)�(a) = h(a)1 for all a 2 A .

Observe first that if U1 2 B(H1)
A ; : : : ; Un 2 B(Hn)
A are pairwise nonequiv-
alent finite dimensional irreducible corepresentations, then their matrix coefficients
with respect to fixed bases in H1; : : : ; Hn are linearly independent. Indeed, the rep-
resentations �U1

; : : : ; �Un of U are irreducible and pairwise nonequivalent. Hence,
by Jacobson’s density theorem, see e.g., [58, Theorem XVII.3.2], the homomorphism
�i�Ui : U ! �iB(Hi) is surjective. For dimension reasons this is possible only if the
matrix coefficients of U1; : : : ; Un are linearly independent.

By assumption A is generated by matrix coefficients of finite dimensional unitary
corepresentations. The product of matrix coefficients is a matrix coefficient of the ten-
sor product of corepresentations, defined as in the quantum group case by U � V =

U13V23 . Since any finite dimensional unitary corepresentation decomposes into a di-
rect sum of irreducible ones, it follows that A is spanned by matrix coefficients of
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finite dimensional irreducible unitary corepresentations. Choose representatives U�
of the equivalence classes of finite dimensional irreducible unitary corepresentations
of A . By the above observation the matrix coefficients of U� (with respect to any fixed
bases in HU� ) form a basis in A . We can therefore define a linear functional h on A
such that h(1) = 1 and (� 
 h)(U�) = 0 if U� 6= 1. Since (� 
 �)(U�) = (U�)12(U�)13 ,
the functional h has the required properties. The uniqueness is obvious.

Step 2. The following orthogonality relations hold: for every � there exists a positive invertible
operator Q� 2 B( �HU�) such that

(�
 h)(U�� (T 
 1)U�) = ��;�
Tr(Tj(Q�))

dimU�
1 for all T 2 B(HU� ; HU�):

The key point to observe is that our proof of the orthogonality relations, The-
orem 1.4.3, did not use the positivity of the Haar state in any way. Namely, that
proof shows that the above relations hold with Q� = (� 
 h)(U c�

� U c
�), where U c

� =

(j
 �)(U�1
� ) = (j
 S)(U�) is the contragredient corepresentation to U� . We thus only

have to check that Q� is positive and invertible for every �.
In order to show this, note that by the proof of Lemma 1.3.12(i) we have j(Q�) 2

Mor(U�; U
cc
� ). But by irreducibility of U� the space Mor(U�; U

cc
� ) is at most one-

dimensional, and every nonzero operator there is invertible. Since Tr(j(Q�)) =

dimU� > 0, it is therefore enough to show that Mor(U�; U
cc
� ) contains a nonzero

positive operator.
The corepresentation U c

� is irreducible, because �U c
�
(!) = j(�U�(!S)) and S is bi-

jective. As we observed in Step 1, the matrix coefficients of pairwise nonequivalent
finite dimensional irreducible corepresentations are linearly independent. It follows
that there exists a finite dimensional irreducible unitary corepresentation V among U�
that is equivalent to U c

� . Choose an invertible operator T 2 Mor(U c
�; V ). Then j(T ) 2

Mor(V c; U cc
� ). On the other hand, starting with the identity

(T 
 1)U c
� = V (T 
 1)

and taking the adjoints and then applying j 
 � we get

(j(T )� 
 1)U� = (j 
 �)(V �)(j(T )� 
 1) = V c(j(T )� 
 1);

so j(T )� 2 Mor(U�; V
c). Therefore Mor(U�; U

cc
� ) contains the positive invertible oper-

ator j(T )j(T )� .

Step 3. We have h(a�a) > 0 for all a 2 A , a 6= 0.

Let u�ij be the matrix coefficients of U� with respect to orthonormal bases in which
the positive invertible operators j(Q�) are diagonal. By Step 2 these matrix coefficients
form an orthogonal basis in A with respect to the sesquilinear form (a; b) = h(b�a),
and (u�ij ; u

�
ij) > 0. Hence this form is positive definite.
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End of proof. The left action of A on itself gives us a faithful �-representation of A
on the pre-Hilbert space A equipped with the scalar product (a; b) = h(b�a). This is
a representation by bounded operators, since A is spanned by matrix coefficients of
unitary matrices over A and every entry of a unitary matrix must act as an operator
of norm not larger than 1. Hence this representation extends to a faithful represen-
tation on the Hilbert space completion of A . Therefore A can be considered as a
subalgebra of its C� -enveloping algebra A. The homomorphism � extends to a unital
�-homomorphism A ! A 
 A, which we continue to denote by �. By Lemma 1.6.6
applied to � = � we have (1 
 A )�(A ) = A 
 A , and similarly one proves that
(A 
 1)�(A ) = A 
 A . It follows that (A;�) has the cancellation property, so it
is a compact quantum group G. Clearly, A � C[G]. Since A is dense in C[G] and
is spanned by matrix coefficients of irreducible unitary representations of G, by the
orthogonality relations for G we conclude that A = C[G].

If A is a finite dimensional Hopf �-algebra, then the �-algebra U we introduced
before Theorem 1.6.7 is in fact a Hopf �-algebra with comultiplication

�̂(!)(a
 b) = !(ab) for a; b 2 A :

The antipode is given by Ŝ(!) = !S and the counit by "̂(!) = !(1). The axioms are
verified via a straightforward computation. The Hopf �-algebra (U ; �̂) is called the
dual of (A ;�). By taking the dual of (U ; �̂) we get back (A ;�).

Even if A is not finite dimensional, we still have a structure on U reminiscent of
a Hopf �-algebra. We will define it in the case A = C[G], although the construction
makes sense in general. Let us first introduce some notation.

Definition 1.6.8. — The algebra of functions on the dual discrete quantum group Ĝ of
a compact quantum group G is the �-algebra U (G) = C[G]� with multiplication and
involution given by

!� = ! � � = (!
 �)� and !� = �!S:

Example 1.6.9. — Assume � is a discrete group and let G = �̂. As we showed in Exam-
ple 1.6.3, in this case C[G] is simply the group algebra of �. Then U (G) is the usual
algebra of functions on �, with pointwise multiplication and involution.

For every finite dimensional representation U of G we defined a representation
�U : U (G) ! B(HU ) by �U (!) = (� 
 !)(U). It is �-preserving if U is unitary. Fix
representatives U� of the equivalence classes of irreducible unitary representations
of G. Then C[G] is the direct sum of the spaces spanned by the matrix coefficients
of U� . It follows that the homomorphisms �U� define a �-isomorphism

U (G) �=
Y
�
B(HU�):
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We will use the notation U (Gn) for the dual space of C[G]
n . Similarly to U (G),
this is a �-algebra, which is canonically isomorphic toY

�1;:::�n

B(HU�1

 � � � 
HU�n ):

Define a map �̂ : U (G)! U (G� G) by

�̂(!)(a
 b) = !(ab) for a; b 2 C[G]:

It is a unital �-homomorphism. Equivalently, �̂(!) 2 U (G�G) is the unique element
such that

(�U� 
 �U�)�̂(!)T = T�U
(!) for all T 2 Mor(U
; U� � U�):

Note that in general the image of �̂ is not contained in the algebraic tensor product
U (G) 
 U (G) � U (G � G); indeed, this is not the case already for G = �̂ when the
discrete group � is infinite.

Define also maps "̂ : U (G)! C and Ŝ : U (G)! U (G) by

"̂(!) = !(1) and Ŝ(!) = !S:

The maps �̂, "̂, Ŝ , as well as the multiplication map m : U (G) 
 U (G) ! U (G), can
be applied to factors of U (G)
n and then extended to U (Gn). For example, the map
�
 �̂ : U (G2)! U (G3) is defined by

(�
 �̂)(!)(a
 b
 c) = !(a
 bc):

With this understanding, one can now easily check that the pair (U (G); �̂) satisfies all
the axioms of a Hopf �-algebra.

The pair (U (G); �̂) will play an important role in the book, in many respects more
important than the pair (C(G);�). The properties of (U (G); �̂) can be formalized,
leading to a theory of discrete quantum groups that provides a dual picture for com-
pact quantum groups [85, 86].

References. — [24], [84], [85], [86], [97].

1.7. MODULAR PROPERTIES OF THE HAAR STATE

Let G be a compact quantum group. Recall that in Section 1.4 we introduced the
positive invertible operators �U 2 Mor(U; U cc).

Definition 1.7.1. — The Woronowicz characters is the family ffzgz2C of linear function-
als on C[G] defined by

(�
 fz)(U) = �zU

for all finite dimensional unitary representations U of G.
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That the functionals fz are well-defined can be checked using the same arguments
as the ones used in the proof of Theorem 1.6.4 to show that " is well-defined. Note that
f0 = ". The functional f1 will be denoted by �. Since the dual space U (G) = C[G]�

is a �-algebra isomorphic to a product of full matrix algebras, the functional calculus
makes sense in U (G). Then

fz = �z 2 U (G):

By Theorem 1.4.9 we have �U�V = �U 
 �V , which means that

�̂(�) = �
 �; hence also Ŝ(�) = ��1;

since m(�
 Ŝ)�̂(�) = "̂(�)1 = 1. Note in passing that the identity Ŝ(�) = ��1 can also
be deduced from Proposition 1.4.7.

Proposition 1.7.2. — The linear functionals fz have the following properties:

(i) fz is a homomorphism C[G]! C;

(ii) �fz = f��z ;

(iii)fz1 � fz2 = fz1+z2 .

Proof. — Part (i) follows from �̂(�z) = �z
�z , while (iii) from �z1�z2 = �z1+z2 . To prove
(ii) note that for any ! 2 U (G) we have �! = Ŝ(!)� , since

Ŝ(!)�(a) = Ŝ(!)(S(a)�) = !(S(S(a)�)) = !(a�)

for any a 2 C[G]. As �̂(�z) = �z 
 �z , we also have Ŝ(�z) = ��z . Hence

�fz = Ŝ(�z)� = (��z)� = ���z = f��z :

Since fz are multiplicative, the maps

a 7! a � fz = (fz 
 �)�(a) and a 7! fz � a = (�
 fz)�(a)

are homomorphisms C[G]! C[G]. Put

�z(a) = fiz � a � fiz :

In other words, for any finite dimensional unitary representation U of G we have

(�
 �z)(U) = (�izU 
 1)U(�izU 
 1):

The map C 3 z 7! �z 2 Aut(C[G]) is a homomorphism, since fz1 � fz2 = fz1+z2 . We
also have �z(a

�) = ��z(a)
� , because �fiz = fi�z . In particular, (�t)t2R is a one-parameter

group of �-automorphisms of C[G], called the modular group. The name is justified by
the following result, proved by a straightforward computation using the orthogonality
relations.

Theorem 1.7.3. — The Haar state h on C[G] is �z -invariant for all z 2 C, and h(ab) =

h(b��i(a)) for all a; b 2 C[G].
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Example 1.7.4. — Consider the quantum group SUq(2) and its fundamental represen-

tation U =

 
� �q
�


 ��

!
. By Example 1.4.2 we have �U =

 
jqj�1 0

0 jqj

!
. It follows that

the modular group is defined by

�t(U) =

 
jqj�it 0

0 jqjit

! 
� �q
�


 ��

! 
jqj�it 0

0 jqjit

!
;

so �t(�) = jqj�2it�, �t(
) = 
.

Denote by Cr(G) the image of C(G) under the GNS-representation �h : C(G) !

B(L2(G)). The automorphisms �t define a strongly continuous one-parameter group
of �-automorphisms of Cr(G), which we continue to denote by �t . The cyclic vector
�h 2 L2(G) defines a state on Cr(G), which we also denote by the same symbol h.

Corollary 1.7.5. — The state h on Cr(G) is faithful.

Proof. — By Theorem 1.7.3 the state h on Cr(G) is a �-KMS�1 -state. A basic result on
KMS-states asserts that the cyclic vector in the GNS-representation of a KMS-state is sep-
arating, see [16, Corollary 5.3.9].

As we already observed in the proof of Theorem 1.6.7, the orthogonality relations
imply that h(a�a) > 0 for all a 2 C[G], a 6= 0. Hence the GNS-representation �h
is faithful on C[G]. Therefore Cr(G) is a completion of C[G]. The homomorphism
�: C[G] ! C[G] 
 C[G] extends to a homomorphism �r : Cr(G) ! Cr(G) 
 Cr(G).
Indeed, by Theorem 1.5.3 we have

�r(a) = Wr(a
 1)W �r ;

where Wr = (� 
 �h)(W ) 2 B(L2(G) 
 L2(G)) and W 2 M(K(L2(G)) 
 C(G)) is the
right regular representation of G. Since C[G] is dense in Cr(G), by the orthogonality
relations the algebra of matrix coefficients of (Cr(G);�r) must coincide with C[G].

Therefore starting from (C(G);�) we get a new compact quantum group (Cr(G);�r)

with the same representation theory and a faithful Haar state. It is called the reduced
form of (C(G);�).

In addition to the reduced form we can define a universal form (Cu(G);�u). The
C� -algebra Cu(G) is defined as the C� -enveloping algebra of C[G]. This algebra is well-
defined, since C[G] is spanned by matrix coefficients of unitary matrices over C[G],
and these have universal bounds on the norms for all possible �-representations. The
homomorphism �: C[G]! C[G]
C[G] extends to a homomorphism �u : Cu(G)!

Cu(G)
Cu(G) by universality. By universality we also have a surjective homomorphism
Cu(G)! C(G).
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Therefore we have a sequence of surjective homomorphisms Cu(G) ! C(G) !

Cr(G), with C[G] sitting densely in all three algebras. We will discuss the question when
Cu(G)! Cr(G) is an isomorphism in Section 2.7.

In addition to the modular group (�t)t of the Haar state, the element � 2 U (G)

can be used to define another important family of automorphisms that provides an
analytic continuation of the even powers of the antipode. Before we introduce it, let
us first compute S2 .

Proposition 1.7.6. — For any finite dimensional unitary representation U of G we have

(�
 S2)(U) = (�U 
 1)U(��1
U 
 1):

Proof. — Recall that S was defined by (�
 S)(U) = U�1 for finite dimensional repre-
sentations U . This can be written as (j 
 S)(U) = U c . Hence

(�
 S2)(U) = U cc:

By definition, if U is unitary, we have �U 2 Mor(U; U cc), so

(�
 S2)(U)(�U 
 1) = (�U 
 1)U:

Remark 1.7.7. — An equivalent formulation of the above proposition is that for any
! 2 U (G) we have Ŝ2(!) = �!��1 . Furthermore, as one can easily check, � is the
only positive invertible element in U (G) with this property and such that Tr(�U (�)) =

Tr(�U (�)�1) for any irreducible representation U of G.

Now for z 2 C define an automorphism �z of C[G] by

�z(a) = f�iz � a � fiz :

In other words,

(�
 �z)(U) = (�izU 
 1)U(��izU 
 1):

We then see that S2 = ��i . The one-parameter group (�t)t2R of �-automorphisms
of C[G] is called the scaling group.

Example 1.7.8. — A computation similar to the one in Example 1.7.4 shows that
for G = SUq(2) we have �t(�) = �, �t(
) = jqj2it
.

Proposition 1.7.9. — The following conditions are equivalent:

(i) � = 1;

(ii) the Haar state h is a trace;

(iii)S2 = �;

(iv) S is �-preserving.
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Proof. — (i))(ii), (iii) This is clear, since �z and �z are trivial when � = 1.

(ii))(i) If h is trace, then h(ab) = h(ba) = h(a��i(b)) for all a; b 2 C[G]. Since h

is faithful on C[G], we conclude that ��i = �. By definition of ��i this implies that
�!� = ! for all ! 2 U (G). Since � is positive, this is possible only when � = 1.

(iii))(i) If S2 = �, then from Proposition 1.7.6 we see that �U 2 End(U). Hence �U
is scalar for irreducible U , and then �U = 1 by the normalization condition on �U .

(iii),(iv) This follows from S(a)� = S�1(a�).

Under the equivalent conditions of the above proposition the compact quantum
group G is said to be of Kac type.

Note that if G is a compact matrix pseudogroup, so that the C� -algebra C(G) is gen-
erated by matrix coefficients of one finite dimensional unitary representation U , then
G is of Kac type if and only if �U = 1. Indeed, the �-algebra generated by the matrix
coefficients of U is the linear span of matrix coefficients of tensor products of copies
of U and U c . By the orthogonality relations it follows that any irreducible unitary rep-
resentation of G is equivalent to a subrepresentation of a tensor product of copies of U
and U c . Hence, if �U = 1, then �V = 1 for any irreducible unitary representation V .

Example 1.7.10. — As follows from Example 1.4.2, the quantum group SUq(2) is not
of Kac type for q 6= �1. Similarly, the quantum groups Au(F ) and Ao(F ) are typically
not of Kac type. On the other hand, Au(n), Ao(n), As(n), genuine compact groups, as
well as the duals G = �̂ of discrete groups, are of Kac type.

One more conclusion we can draw from the above considerations is that the map
S is unbounded on C[G] � C(G) unless G is of Kac type. Indeed, take an irreducible
unitary representation U such that �U 6= 1. Since Tr(�U ) = Tr(��1

U ), it follows that the
spectrum of �U contains a number > 1 and a number < 1. Hence, for every n 2 N, we
can find m 2 N such that for an irreducible unitary subrepresentation V of U�m the
operator �V has an eigenvalue �1 > n. It also has an eigenvalue �2 < 1. Then under
the action of S2 the matrix coefficient of V defined by the corresponding eigenvectors
gets multiplied by �1�

�1
2 > n. Hence the map S2 is unbounded.

When G is not of Kac type and so S is not �-preserving, it is sometimes convenient to
consider a sort of polar decomposition of S . The automorphism ��i=2 plays the role
of the absolute value, and the map R = S�i=2 , called the unitary antipode, plays the
role of the unitary part. For finite dimensional unitary representations we have

(1.7.1) (j 
 S)(U) = U c and (j 
 R)(U) = �U:

Proposition 1.7.11. — The unitary antipode R is an involutive �-anti-automorphism of C[G]

such that �R = (R
 R)�op .
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Proof. — Using that �z(a�) = ��z(a)
� and (�
 S)(U) = U� for unitary representations

U , a straightforward computation yields S�z = �zS . In particular, R = �i=2S , hence

R2 = �i=2S
2�i=2 = �:

This also follows from (j 
 R)(U) = �U , since ��U = U .
Since �i=2 is a homomorphism and S is an anti-homomorphism, R is an anti-

homomorphism.
As S = ��i=2R = R��i=2 and so S(a)� = ��i=2(R(a))� = �i=2(R(a)�), using a� =

S(S(a)�) we get
a� = (R��i=2)(�i=2(R(a)�)) = R(R(a)�):

Hence R(a�) = R(a)� .
Finally, since �S = (S 
 S)�op and ��z = (�z 
 �z)�, which is immediate from

(�
 �z)(U) = (�izU 
 1)U(��izU 
 1), we get �R = (R
 R)�op .

The unitary antipode on U (G) is defined by R̂(!) = ��1=2Ŝ(!)�1=2 = !R. It is
an involutive �-anti-automorphism of U (G) such that �̂R̂ = (R̂
 R̂)�̂op . This is even
easier to verify than to check the properties of R.

References. — [55], [63], [94], [97].
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CHAPTER 2

C� -TENSOR CATEGORIES

In this chapter we study compact quantum groups from a categorical point of view.
The central result is an extension of the Tannaka-Krein duality to the quantum setting.
It shows how a compact quantum group can be reconstructed from its representation
category concretely realized as a category of Hilbert spaces and, furthermore, charac-
terizes categories that arise from representations of compact quantum groups. In addi-
tion to proving this general quite abstract result, we discuss what it means for categories
of representations of Hopf �-algebras. This in particular allows us to look from a dif-
ferent angle at some of the examples from the previous chapter and generalize, using
the Drinfeld-Jimbo quantized universal enveloping algebras, the deformation SUq(2)

of SU(2) to all simply connected semisimple compact Lie groups.

2.1. BASIC DEFINITIONS

The following definition is discouragingly long, but the reader should keep in mind
that it simply tries to capture the essential properties of the category of Hilbert spaces
with bounded linear operators as morphisms.

Definition 2.1.1. — A category C is called a C� -category if

(i) Mor(U; V ) is a Banach space for all objects U and V , the map

Mor (V;W )�Mor (U; V )! Mor (U;W ); (S; T ) 7! ST;

is bilinear, and kSTk � kSk kTk;

(ii) we are given an antilinear contravariant functor � : C ! C that is the identity map
on objects, so if T 2 Mor(U; V ), then T � 2 Mor(V; U), and that satisfies the following
properties:

(a) T �� = T for any morphism T ;
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(b) kT �Tk = kTk2 for any T 2 Mor(U; V ); in particular, End(U) = Mor(U; U) is a
unital C� -algebra for every object U ;

(c) for any morphism T 2 Mor(U; V ), the element T �T of the C� -algebra End(U) is
positive.

Condition (c) is sometimes omitted. In any case, if we dropped it, it would follow
for the categories we are interested in from our condition (vi) below.

Using the �-operation we can define notions of projection, unitary, partial isometry,
etc., for morphisms. For example, a morphism u 2 Mor(U; V ) is called unitary, if u�u =

1 and uu� = 1.

The category C is called a C� -tensor category, or a monoidal C� -category, if in ad-
dition we are given a bilinear bifunctor 
 : C � C ! C , (U; V ) 7! U 
 V , natural
unitary isomorphisms

�U;V;W : (U 
 V )
W ! U 
 (V 
W );

called the associativity morphisms, an object 1, called the unit object, and natural uni-
tary isomorphisms

�U : 1
 U ! U; �U : U 
 1! U;

such that

(iii)the pentagonal diagram

((U 
 V )
W )
 X

�
�

tt

�12;3;4

**
(U 
 (V 
W ))
 X

�1;23;4

��

(U 
 V )
 (W 
 X)

�1;2;34

��
U 
 ((V 
W )
 X)

�
� // U 
 (V 
 (W 
 X))

commutes; here the leg-numbering notation for the associativity morphisms means
that �12;3;4 = �U
V;W;X , etc.;

(iv) �1 = �1 , and the triangle diagram

(U 
 1)
 V
� //

�
� &&

U 
 (1
 V )

�
�xx
U 
 V

commutes;

(v) (S 
 T )� = S� 
 T � for any morphisms S and T .

In addition we will also always assume that
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(vi)the category C has finite direct sums, meaning that for any objects U and V there
exist an object W and isometries u 2 Mor(U;W ) and v 2 Mor(V;W ) such that uu� +

vv� = 1;

(vii) the category C has subobjects, meaning that for every projection p 2 End(U)

there exists an object V and an isometry v 2 Mor(V; U) such that vv� = p; note that an
object defined by the zero projection 0 2 End(U) for some U is a zero object, that is,
an object 0 such that Mor(0; W ) = 0 and Mor(W; 0) = 0 for any W ;

(viii)the unit object 1 is simple, that is, End(1) = C1 �= C;

(ix)the category is small, that is, the class of objects is a set.

The category C is called strict if (U 
 V )
W = U 
 (V 
W ), 1
U = U 
1 = U ,
and �, � and � are the identity morphisms.

The primary example of a C� -tensor category is the category Hilbf of finite dimen-
sional Hilbert spaces. To be pedantic, in order to make this category small we need to
consider a set of Hilbert spaces instead of all possible spaces. We will assume that such
a set is fixed once for all, and it is big enough to accommodate all the constructions we
will encounter. We should also fix exactly what realization of tensor products we are
using, as well as choose a one-dimensional Hilbert space playing the role of the unit
object.

The associativity morphisms in Hilbf are of course (�
 �)
 � 7! �
 (�
 �). They
are so obvious that it is common to consider Hilbf as a strict tensor category. In fact,
it is indeed strict in the rigorous sense with a suitable definition of tensor products.
In order to see this, consider the Cuntz algebra O1 , the universal unital C� -algebra
generated by isometries Sn , n � 1, such that the projections SnS�n are mutually orthog-
onal, so that S�i Sj = �ij1. For every finite dimensional Hilbert space H fix a linear map
�H : H ! O1 such that �H(�)��H(�) = (�; �)1. If H is already a subspace of O1 such
that ��� = (�; �)1 for all �; � 2 H , we take �H to be the inclusion map. For arbitrary H
and K we then define H
K as the subspace of O1 spanned by the vectors �H(�)�K(�),
and let �
 � = �H(�)�K(�). The unit object is of course C1 � O1 .

Independently of how we define tensor products to get the strict tensor C� -category
Hilbf , the unit object is a uniquely defined one-dimensional Hilbert space. It has a
unique unit vector � such that �
 � = �. Therefore 1 is canonically isomorphic to C.
By slightly abusing notation we will henceforth identify 1 with C.

Another example of a strict C� -tensor category, which is our main object of inter-
est, is the category RepG of finite dimensional unitary representations of a compact
quantum group G. Again, to be precise, we should assume that the underlying spaces
of our representations are elements of the set of Hilbert spaces used to define Hilbf .
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By a result of Mac Lane [48, Theorem X1.5.3] (proved though in a slightly differ-
ent context than we are dealing with now), any tensor category can be strictified. This
means that it is equivalent, in a sense that will be explained shortly, to a strict tensor
category. It follows that in developing the general theory we may assume that our cate-
gories are strict. Mac Lane’s result is also useful in formal computations, as it allows one
to perform such computations as if the category one works with were strict. This will be
used in Section 4.2. At the same time a strictification is not always desirable, since cer-
tain categories are better described as nonstrict categories. Let us give a simple exam-
ple, another important example of the same type, but significantly more complicated,
will be given in Section 4.1.

Example 2.1.2. — Let � be a discrete group, and ! 2 Z3(�; T) be a normalized T-val-
ued 3-cocycle; recall that being normalized means that !(g; h; k) = 1 whenever one
of the elements g , h or k is the unit element. Define a C� -tensor category C (�; !) as
follows. First consider the category C (�) = Rep �̂ of finite dimensional unitary rep-
resentations of �̂. Then define C (�; !) as the same category C (�), except that the
associativity morphisms are given by the action of ! 2 U (�̂3).

More concretely, by Example 1.6.3 we can choose representatives Vg of simple ob-
jects of C (�; !) indexed by elements g 2 �. Note that Vg 
 Vh �= Vgh , and we can even
arrange Vg
Vh = Vgh by taking the spaces HVg to be the unit 1 in Hilbf . The associativ-
ity morphisms are defined by the operators HVg
HVh
HVk ! HVg
HVh
HVk of multi-
plication by !(g; h; k), or in other words, by the operators !(g; h; k)1 2 End(Vghk). The
commutativity of the pentagon diagram is equivalent to the cocycle identity

!(h; k; l)!(g; hk; l)!(g; h; k) = !(gh; k; l)!(g; h; kl):

Definition 2.1.3. — Let C and C 0 be C� -tensor categories. A tensor functor C ! C 0

is a functor F : C ! C 0 that is linear on morphisms, together with an isomorphism
F0 : 10 ! F (1) in C 0 and natural isomorphisms

F2 : F (U)
 F (V )! F (U 
 V )

such that the diagram

(F (U)
 F (V ))
 F (W )

�0

��

F2
� // F (U 
 V )
 F (W )
F2 // F ((U 
 V )
W )

F (�)

��
F (U)
 (F (V )
 F (W ))

�
F2 // F (U)
 F (V 
W )
F2 // F (U 
 (V 
W ))
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and the diagrams

F (1)
 F (U)
F2 // F (1
 U)

F (�)

��
10 
 F (U)

�0 //

F0
�

OO

F (U)

F (U)
 F (1)
F2 // F (U 
 1)

F (�)

��
F (U)
 10

�0 //

�
F0

OO

F (U)

commute.
We say that the tensor functor is unitary if in addition F (T )� = F (T �) on mor-

phisms, and F2 : F (U)
 F (U)! F (U 
 V ) and F0 are unitary.

It can be shown that F0 is uniquely determined by F and F2 . Furthermore, instead
of the existence of F0 it is enough to assume that F (1) �= 10 . In any case, there will
always be an obvious choice for F0 , so we will often omit F0 in our considerations.

Example 2.1.4. — Let G be a compact quantum group. Define a tensor functor
F : RepG ! Hilbf by letting F (U) = HU for every finite dimensional unitary repre-
sentation of G, while F2 , as well as the action of F on morphisms, are taken to be the
identity maps.

Definition 2.1.5. — A natural isomorphism � : F ! G between two tensor functors
C ! C 0 is called monoidal if the diagrams

F (U)
 F (V )
F2 //

�
�

��

F (U 
 V )

�

��
G(U)
 G(V )

G2 // G(U 
 V )

10

G0

!!

F0

}}
F (1)

� // G(1)

commute.

Definition 2.1.6. — Two C� -tensor C and C 0 categories are called monoidally equiv-
alent if there exist tensor functors F : C ! C 0 and G : C 0 ! C such that FG and
GF are naturally monoidally isomorphic to the identity functors. If we can choose F ,
G and the natural isomorphisms FG �= � and GF �= � to be unitary, then we say that C
and C 0 are unitarily monoidally equivalent.

In practice we will use the following criterion of equivalence rather than the above
definition: a (unitary) tensor functor F : C ! C 0 is a (unitary) monoidal equivalence
if and only if F is fully faithful (that is, it defines an isomorphism between Mor(U; V )

and Mor(F (U); F (V ))) and essentially surjective (that is, every object in C 0 is isomor-
phic to F (U) for some U ). Furthermore, we will mainly deal with semisimple cate-
gories, meaning that every object is a direct sum of simple ones. For such a category
C choose representatives U� of the isomorphism classes of simple objects. Then a ten-
sor functor F : C ! C 0 , where C 0 is another semisimple C� -tensor category, is a
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monoidal equivalence if and only if the objects F (U�) are simple, pairwise nonisomor-
phic, and any simple object in C 0 is isomorphic to some F (U�).

Example 2.1.7. — Let � be a discrete group, ! and !0 be normalized T-valued 3-co-
cycles on �. Consider the categories C (�; !) and C (�; !0) defined in Example 2.1.2.
Assume c is a T-valued 2-cochain on � such that !0!�1 = @c, so

(!0!�1)(g; h; k) = c(h; k)c(gh; k)�1c(g; hk)c(g; h)�1:

Then we can define a tensor functor F : C (�; !) ! C (�; !0) that is the identity map
on objects and morphisms, while the tensor structure F2 is given by the action of c�1 2

U (�̂2). Therefore the categories C (�; !) and C (�; !0) are unitarily monoidally equiv-
alent. So up to equivalence C (�; !) depends only on the cohomology class of !. Fur-
thermore, it is not difficult to see that C (�; !) and C (�; !0) are unitarily monoidally
equivalent if and only if there exists an automorphism � of � such that the cocycles
�(!) and !0 are cohomologous.

As we already mentioned, but now can be more precise, a theorem of Mac Lane as-
serts that any C� -tensor category is unitarily monoidally equivalent to a strict C� -tensor
category. In view of Example 2.1.7 this might seem counterintuitive, since it is natural to
assume that the cohomology class of ! is an obstruction for strictification of C (�; !).
Note, however, that since free groups have cohomological dimension one, any 3-co-
cycle on � becomes a coboundary when lifted to the free group with generators in �.
The proof of Mac Lane’s theorem is based on a similar idea: the new strict category
equivalent to C has objects that are n-tuples of objects in C , while the tensor product
is defined by concatenation, see the proof of [48, Theorem XI.5.3] for details.

References. — [25], [45], [48], [61].

2.2. CONJUGATE OBJECTS AND INTRINSIC DIMENSION

Let C be a strict C� -tensor category.

Definition 2.2.1. — An object �U is said to be conjugate to an object U in C if there
exist morphisms R : 1! �U 
 U and �R : 1! U 
 �U such that

U
�
R
��! U 
 �U 
 U

�R�
�
���! U and �U

�
 �R
��! �U 
 U 
 �U

R�
�
���! �U

are the identity morphisms. The identities ( �R� 
 �)(�
R) = � and (R� 
 �)(�
 �R) = �

are called the conjugate equations.
If every object has a conjugate object, then C is said to be a C� -tensor category with

conjugates, or a rigid C� -tensor category.
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Note that this definition is symmetric in U and �U , so U is conjugate to �U .

The notion of a conjugate object can of course be defined also for nonstrict cate-
gories. Then the conjugate equations involve the associativity morphisms and the iso-
morphisms � and �. But since any tensor category can be strictified, in developing the
theory it suffices to consider strict tensor categories.

Example 2.2.2. — Consider C = Hilbf . If H is a finite dimensional Hilbert space with
an orthonormal basis feigi , define

r : C! �H 
H by r(1) =
X
i

�ei 
 ei;

and

�r : C! H 
 �H by �r(1) =
X
i
ei 
 �ei:

Then the pair (r; �r) solves the conjugate equations for H . Hence �H is a conjugate ob-
ject to H . Note that r and �r do not depend on the choice of an orthonormal basis.
At the same time the pair (r; �r) is not the only possible: for any invertible operator
T 2 B(H) the maps

(1
 T �)r = (j(T )� 
 1)r and (T�1 
 1)�r = (1
 j(T )�1)�r

also solve the conjugate equations; recall that j denotes the canonical anti-isomor-
phism of B(H) onto B( �H), j(T )�� = T �� for � 2 H .

Example 2.2.3. — Consider C = RepG, where G is a compact quantum group.
Let U 2 B(H) 
 C(G) be a finite dimensional unitary representation. Consider the
maps r and �r from the previous example. A straightforward computation shows that
�r 2 Mor(1; U � U c) (more generally, if we identify H 
 �H with B(H), then the map
Mor(1; U � U c) ! B(H), f 7! f(1), defines an isomorphism of Mor(1; U � U c)

onto End(U) that maps �r into 1 2 End(U)). Consider the operator �U 2 Mor(U; U cc)

introduced in Section 1.4. By the definition of the conjugate representation we have
j(�U )1=2 2 Mor(U c; �U). Hence the operator

�R = (1
 j(�U )1=2)�r = (�1=2
U 
 1)�r

belongs to Mor(1; U � �U). Replacing U by �U we also get an operator

R = (1
 j(� �U )1=2)r 2 Mor(1; �U � U):

By Proposition 1.4.7 we have � �U = j(�U )�1 , hence

R = (1
 ��1=2
U )r:

Therefore (R; �R) is a solution of the conjugate equations for U , so �U is a conjugate
object to U .
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Example 2.2.4. — Consider the category C (�; !) defined in Example 2.1.2. Unless the
cocycle ! is trivial, this is a nonstrict category, but as we mentioned above, the notion
of a conjugate object still makes sense. Then as a conjugate to Vg we can take Vg�1 ,
with R : Ve ! Vg�1 
 Vg = Ve to be the identity map and �R : Ve ! Vg 
 Vg�1 = Ve the

multiplication by !(g; g�1; g) = !(g�1; g; g�1) (this equality follows by applying the
cocycle identity to (g; g�1; g; g�1)).

Proposition 2.2.5. — For any object U in C a conjugate object, if it exists, is uniquely deter-
mined up to an isomorphism. More precisely, if (R; �R) is a solution of the conjugate equations
for U and �U , and (R0; �R0) is a solution of the conjugate equations for U and �U 0 , then

T = (� �U 

�R0
�
)(R
 � �U 0) 2 Mor( �U 0; �U)

is invertible with inverse S = (� �U 0 

�R�)(R0 
 � �U ), and

R0 = (T�1 
 �)R; �R0 = (�
 T �) �R:

Proof. — We compute:

TS = (�
 �R0
�
)(R
 �)(�
 �R�)(R0 
 �)

= (�
 �R0
�
)(�
 �
 �
 �R�)(R
 �
 �
 �)(R0 
 �)

= (�
 �R�)(�
 �R0
�

 �
 �)(�
 �
 R0 
 �)(R
 �)

= (�
 �R�)(R
 �) = �:

Similarly one checks that ST = �. Next,

(T�1 
 �)R = (�
 �R� 
 �)(R0 
 �
 �)R = (�
 �R� 
 �)(�
 �
 R)R0 = R0:

Similarly, (�
 T �) �R = �R0 .

We also have the following related important result, proved by a straightforward
computation.

Theorem 2.2.6 (Frobenius reciprocity). — If an object U has a conjugate, with R and �R

solving the conjugate equations, then the map

Mor(U 
 V;W )! Mor(V; �U 
W ); T 7! (� �U 
 T )(R
 �V );

is a linear isomorphism, and the inverse map is given by S 7! ( �R� 
 �W )(�U 
 S). Similarly,
Mor(V 
 U;W ) ' Mor(V;W 
 �U).

Corollary 2.2.7. — Assume that U is simple and that �U is conjugate to U . Then �U is simple
and the spaces Mor(1; �U 
 U) and Mor(1; U 
 �U) are one-dimensional.

Proof. — By the Frobenius reciprocity the spaces End( �U), Mor(1; �U 
 U) and
Mor(1; U 
 �U) are isomorphic to End(U) = C1.
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Proposition 2.2.8. — Assume that an object U has a conjugate. Then End(U) is finite dimen-
sional.

Proof. — We will prove the proposition by showing that there exists a positive linear
functional f on End(U) such that T � f(T )1 for all T � 0, which is possible only for
finite dimensional C� -algebras.

In order to do this, define 'U : End(U) ! End(1) by letting 'U (T ) to be equal to
the composition

1
R
�! �U 
 U

�
T
��! �U 
 U

R�
�! 1:

For X 2 End(U) consider Y = (�
 X)R 2 Mor(1; �U � U). Then

X = ( �R� 
 �U )(�U 
 Y ) 2 Mor(U 
 1;1
 U) = End(U):

It follows that

X�X � k �Rk2(�
 Y �Y ) = k �Rk2(�
 'U (X�X))

Therefore if the functional f is defined by k �Rk2'U (T ) = f(T )1, then f(T )1 � T for
all T 2 End(U)+ .

Corollary 2.2.9. — Every object with a conjugate decomposes into a finite direct sum of simple
objects.

Proposition 2.2.10. — The class of objects in C that have conjugates forms a C� -tensor subcat-
egory of C .

Proof. — It is easy to see that the class of objects with conjugates is closed under taking
direct sums. We have to show that it is also closed under taking tensor products and
subobjects.

Assume (RU ; �RU ) is a solution of the conjugate equations for U , and (RV ; �RV ) is a
solution of the conjugate equations for V . Viewing RV as a morphism 1! �V 
 1
 V

put

R = (�
 RU 
 �)RV 2 Mor(1; �V 
 �U 
 U 
 V ):

Similarly define �R = (�
 �RV 
 �) �RU 2 Mor(1; U
V 
 �V 
 �U). Then (R; �R) is a solution
of the conjugation equations for U 
 V , so �V 
 �U is conjugate to U 
 V .

Assume now that (RU ; �RU ) is a solution of the conjugate equations for U , and that
V is subobject of U , so there exists an isometry w 2 Mor(V; U). By the Frobenius reci-
procity, there exists a linear isomorphism End(U) ! End( �U), T 7! T_ , uniquely de-
fined by the identities

(�
 T )RU = (T_ 
 �)RU :

This linear isomorphism is anti-multiplicative (but not, in general, �-preserving), as

(�
 ST )RU = (T_ 
 S)RU = (T_S_ 
 �)RU :
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Hence e = (ww�)_ 2 End( �U) is an idempotent. Then e is equivalent to a projection,
and since C is assumed to have subobjects, there exists an object �V and morphisms
S 2 Mor( �V ; �U) and T 2 Mor( �U; �V ) such that TS = � �V and ST = e. Put

RV = (T 
 w�)RU and �RV = (w� 
 S�) �RU :

Then (RV ; �RV ) is a solution of the conjugate equations for V . Let us, for example,
check that ( �R�V 
 �)(�
 RV ) = �V :

( �R�V 
 �)(�
 RV ) = ( �R�U 
 �)(w 
 ST 
 w�)(�
 RU )

= w�( �R�U 
 �)(�
 e
 �)(�
 RU )w

= w�( �R�U 
 �)(�
 �
 ww�)(�
 RU )w

= w�ww�w = �V :

Assume now till the end of the section that C is a C� -tensor category with conju-
gates.

Let U be a simple object, �U be conjugate to U , and (R; �R) be a solution of the con-
jugate equations for U and �U . By Proposition 2.2.5 or by Corollary 2.2.7 any other so-
lution of the conjugate equations for U and �U has the form R0 = ��R, �R0 = ��1 �R for
some � 2 C� . In particular, the number kRk � k �Rk is independent of the solution.

Definition 2.2.11. — The number

di(U) = kRk � k �Rk

is called the intrinsic dimension of the simple object U .
For general U , decompose U into a direct sum of simple objects, U = �kUk , and

put di(U) =
P

k di(Uk).

Note that we always have di(1) = 1.

Example 2.2.12. — For C = Hilbf we have di(U) = dimU , since every object is a
direct sum of copies of the unit object. We get the same identity di(U) = dimU for the
categories C (�; !), since di(Vg) = 1 by Example 2.2.4.

Example 2.2.13. — Consider C = RepG, where G is a compact quantum group. Let U
be an irreducible unitary representation of G. In Example 2.2.3 we showed that the
operators R = (1
��1=2

U )r and �R = (�1=2
U 
1)�r solve the conjugate equations. Let feigi

be an orthonormal basis in HU . Then

kRk = k(1
 ��1=2
U )r(1)k =





X
i

�ei 
 ��1=2
U ei





 = Tr(��1
U )1=2 = (dimq U)1=2:

Similarly, k �Rk = (dimq U)1=2 . Therefore di(U) = dimq U .
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The intrinsic dimension di(U) for nonsimple objects can be expressed in terms of
solutions of the conjugate equations. In order to see this, let us introduce a partic-
ular class of such solutions. Decompose U into a direct sum of simple objects: U =

�kUk . This decomposition means that we fix isometries wk 2 Mor(Uk; U) such thatP
k wkw

�
k = 1. For every k choose a conjugate �Uk to Uk . Let �U be the direct sum of �Uk ,

and let �wk 2 Mor( �Uk; �U) be the corresponding isometries. Let (Rk; �Rk) be a solution of
the conjugate equations for Uk and �Uk . Then R =

P
k( �wk
wk)Rk , �R =

P
k(wk
 �wk) �Rk

is a solution of the conjugate equations for U and �U .

Definition 2.2.14. — A solution of the conjugate equations for U and �U of the form

R =
X
k

( �wk 
 wk)Rk; �R =
X
k

(wk 
 �wk) �Rk;

with Uk simple and kRkk = k �Rkk = di(Uk)
1=2 for all k , is called standard.

For standard solutions we have the following refinement of Proposition 2.2.5.

Proposition 2.2.15. — Assume (R; �R) is a standard solution of the conjugate equations for U
and �U , and (R0; �R0) is another standard solution of the conjugate equations for U and �U 0 . Then
there exists a unitary T 2 Mor( �U; �U 0) such that R0 = (T 
 �)R and �R0 = (�
 T ) �R.

Proof. — In order to simplify the notation we will only consider the case when U is a
direct sum of n objects isomorphic to one simple object V . Then we can write

R =
X
k

( �wk 
 wk)R0; �R =
X
k

(wk 
 �wk) �R0;

and similarly for R0 and �R0 using isometries w0j and �w0j , where (R0; �R0) is a fixed so-

lution of the conjugate equations for V with kR0k = k �R0k. The projections wkw�k , as
well as the projections w0jw

0�
j , are minimal projections in End(U) �= Matn(C) that add

up to one. Hence there exists a unitary S 2 End(U) such that Swkw�kS
� = w0kw

0�
k . The

isometry Swk must coincide with w0k up to a phase factor, hence by changing S we can
arrange so that Swk = w0k . Let skj be the scalar w�kSwj 2 End(V ) �= C. Then (skj)k;j is a
unitary matrix, and if we let T =

P
j;k skj �w0j �w�k , then T is unitary,

w0j = Swj =
X
k

skjwk and T �wk =
X
j
skj �w0j :

It follows that X
k

T �wk 
 wk =
X
k;j

skj �w0j 
 wk =
X
j

�w0j 
 w0j ;

so R0 = (T 
 �)R. For the same reason �R0 = (�
 T ) �R.

If R =
P

k( �wk 
 wk)Rk and �R =
P

k(wk 
 �wk) �Rk form a standard solution, then

kRk21 = R�R =
X
k

R�kRk =
X
k

di(Uk)1 = di(U)1:
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Similarly k �Rk = di(U)1=2 . To make this useful, we need an intrinsic characterization
of standard solutions.

Theorem 2.2.16. — Let (R; �R) be a solution of the conjugate equations for U and �U . Define a
map 'U : End(U)! End(1) by letting 'U (T ) to be equal to the composition

1
R
�! �U 
 U

�
T
��! �U 
 U

R�
�! 1;

and similarly define  U : End(U)! End(1) by letting  U (T ) to be equal to the composition

1
�R
�! U 
 �U

T
�
��! U 
 �U

�R�
�! 1:

Then (R; �R) is standard if and only if 'U =  U . Furthermore, for the standard solutions the
maps 'U and  U are tracial, positive and faithful, and they do not depend on the choice of a
standard solution.

Proof. — If (R; �R) is a standard solution, so

R =
X
k

( �wk 
 wk)Rk; �R =
X
k

(wk 
 �wk) �Rk;

then

'U (T ) =
X
k

'Uk(w
�
kTwk) and  U (T ) =

X
k

 Uk(w
�
kTwk):

We clearly have 'Uk =  Uk , since both maps send 1 2 End(Uk) = C1 into di(Uk)1 =

kRkk
21 = k �Rkk

21. Hence 'U =  U .

We will next check that 'U is tracial. In order to simplify the notation assume, as in
the proof of the previous proposition, that all the objects Uk coincide with one simple
object V . In this case for any T 2 End(U) the morphism w�kTwl 2 End(V ) is a scalar,
and we can identify the C� -algebra End(U) with Matn(C) via the map T 7! (w�kTwl)k;l .
Then 'U (T ) = Tr(T )'V (1). Therefore 'U is tracial, positive and faithful.

The fact that 'U and  U are independent of the choice of a standard solution is an
immediate consequence of Proposition 2.2.15.

Finally, assume that (R0; �R0) is an arbitrary solution of the conjugate equations for
the same �U . By Proposition 2.2.5, applied to the pair ( �U; U) rather than to (U; �U), there
exists an invertible element T 2 End(U) such that R0 = (�
T �)R and �R0 = (T�1
�) �R.
Then for any S 2 End(U) we have

'0U (S) = 'U (TST �) = 'U (ST �T )

and

 0U (S) =  U ((T �)�1ST�1) =  U (ST�1(T �)�1) =  U (S(T �T )�1):

It follows that '0U =  0U if and only if T �T = (T �T )�1 , that is, T is unitary. Then (R0; �R0)

is clearly standard, defined by the isometries T �wk and �wk .
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Remark 2.2.17. — If C = RepG for a compact quantum group G, then for R and �R

defined in Example 2.2.3 we have 'U = Tr(� ��1
U )1 and  U = Tr(� �U )1. So up to a

scalar factor the maps 'U and  U coincide with the states defined in Section 1.4, and
the condition 'U (T ) =  U (T ) for T 2 End(U) is exactly the condition used there to
define �U .

The map 'U =  U : End(U) ! End(1) �= C defined by a standard solution of
the conjugate equations is called the trace and denoted by TrU . By definition, di(U) =

TrU (1). Note also that if S 2 Mor(U; V ) and T 2 Mor(V; U), then we can extend S and

T to the endomorphisms ~S =

 
0 0

S 0

!
and ~T =

 
0 T

0 0

!
of U � V , and then get

TrV (ST ) = TrU�V ( ~S ~T ) = TrU�V ( ~T ~S) = TrU (TS):

Extending Theorem 1.4.9 we can now prove multiplicativity of the intrinsic dimen-
sion on tensor products.

Theorem 2.2.18. — For any S 2 End(U) and T 2 End(V ) we have

TrU
V (S 
 T ) = TrU (S) TrV (T ):

In particular, di(U 
 V ) = di(U) di(V ).

Proof. — Let (RU ; �RU ) be a standard solution of the conjugate equations for U , and
(RV ; �RV ) be a standard solution of the conjugate equations for V . Then, as we have al-
ready used in the proof of Proposition 2.2.10, we can define a solution of the conjugate
equations for U 
 V by

R = (�
 RU 
 �)RV and �R = (�
 �RV 
 �) �RU :

We claim that this solution is standard. In order to see this define the maps
'U
V ;  U
V : End(U 
 V ) ! End(1) as in Theorem 2.2.16 using (R; �R). For Q 2

End(U 
 V ) we compute:

'U
V (Q) = R�V (�
 R�U 
 �)(�
 �
 Q)(�
 RU 
 �)RV

= 'V ((R�U 
 �)(�
 Q)(RU 
 �))

=  V ((R�U 
 �)(�
 Q)(RU 
 �))

= �R�V (R�U 
 �
 �)(�
 Q
 �)(RU 
 �
 �) �RV

= (R�U 

�R�V )(�
 Q
 �)(RU 
 �RV ):

Similarly one checks that

 U
V (Q) = (R�U 

�R�V )(�
 Q
 �)(RU 
 �RV ):
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Therefore 'U
V =  U
V , so (R; �R) is standard. Then from the above identities we get

TrU
V (S 
 T ) = (R�U 

�R�V )(�
 S 
 T 
 �)(RU 
 �RV ) = TrU (S) TrV (T ):

We next give one more characterization of the intrinsic dimension.

Theorem 2.2.19. — For every object U we have

di(U) = minfk �Rk � kRkg;

where the minimum is taken over all solutions of the conjugate equations for U . Furthermore,
the minimum is attained exactly on the solutions that up to scalar factors coincide with standard
solutions.

Proof. — Let (R; �R) be a standard solution. Then we already know that di(U) = kRk2 =

k �Rk2 . By Proposition 2.2.5 any other solution for the same �U has the form R0 = (� 


T �)R, �R0 = (T�1 
 �) �R for an invertible element T 2 End(U). Then

R0
�
R0 = TrU (TT �) and �R0

� �R0 = TrU ((T �)�1T�1) = TrU ((TT �)�1):

By the Cauchy-Schwarz inequality we have

TrU (1) � TrU (TT �)1=2 TrU ((TT �)�1)1=2;

and the equality holds if and only if TT � and (TT �)�1 are colinear, that is, TT � is a scalar,
or in other words, T is a unitary multiplied by a scalar. But in this case (R0; �R0) coincides
modulo scalar factors with a standard solution.

Corollary 2.2.20. — Let C 0 be a C� -tensor category with conjugates and F : C ! C 0 be a
unitary tensor functor. Then di(F (U)) � di(U) for any object U in C .

Proof. — Let (R; �R) be a standard solution of the conjugate equations for U . Define
R0 : 10 ! F ( �U)
 F (U) as the composition

10
F0
�! F (1)

F (R)
���! F ( �U 
 U)

F �2
�! F ( �U)
 F (U);

and similarly define �R0 : 10 ! F (U)
 F ( �U) as the composition

10
F0
�! F (1)

F ( �R)
���! F (U 
 �U)

F �2
�! F (U)
 F ( �U):

One can check that (R0; �R0) is a solution of the conjugate equations for F (U). Fur-
thermore, kR0k = kRk = di(U)1=2 , since R0�R0 = F �0 F (R�R)F0 = kRk21, and similarly
k �R0k = di(U)1=2 . Hence di(F (U)) � di(U).

We finish the section by showing how the operation of taking a conjugate can be
extended to a contravariant functor. Essentially this was already done in the proof of
Proposition 2.2.10.
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For every object U fix a conjugate object �U and a solution (RU ; �RU ) of the con-
jugate equations. By the Frobenius reciprocity, there exists a linear isomorphism
Mor(U; V )! Mor( �V ; �U), T 7! T_ , uniquely defined by the identities

(�
 T )RU = (T_ 
 �)RV :

Explicitly,

T_ = (�
 �R�V )(�
 T 
 �)(RU 
 �):

Note that T_ is also defined by the identity

�R�V (T 
 �) = �R�U (�
 T_):

Theorem 2.2.21. — The maps U 7! �U and T 7! T_ define a contravariant functor C ! C .
If all the solutions of the conjugate equations used to define this functor are standard, then the
functor is unitary and its square is naturally unitarily isomorphic to the identity functor.

Proof. — The same computation as in the proof of Proposition 2.2.10 shows that
(ST )_ = T_S_ , so we indeed get a contravariant functor.

Assuming now that the solutions of the conjugate equations are standard, in order
to check that T �_ = T_� for T 2 Mor(U; V ) it suffices to show that Tr �U (ST �_) =

Tr �U (ST_�) for all S 2 Mor( �V ; �U). We compute:

Tr �U (ST �_) = R�U (ST �_ 
 �)RU = R�U (S 
 T �)RV = ((�
 T )RU )�(S 
 �)RV

= R�V (T_�S 
 �)RV = Tr �V (T_�S) = Tr �U (ST_�):

Hence T �_ = T_� .

Since ( �RU ; RU ) and (R �U ;
�R �U ) are both standard solutions of the conjugate equations

for �U , by Proposition 2.2.15 there exists a unitary �U 2 Mor(U; ��U) such that

(�
 �U )RU = �R �U and (�U 
 �) �RU = R �U :

For T 2 Mor(U; V ) we have

(�
 �V T )RU = (T_ 
 �V )RV = (T_ 
 �) �R �V = ( �R��V (T_� 
 �))�

= ( �R��U (�
 T_�_))� = (�
 T_�_�) �R �U = (�
 T_�_��U )RU ;

so T_�_��U = �V T . Since T �_ = T_� , we thus get T__�U = �V T . Hence the unitaries
�U define a natural isomorphism between the identity functor and the functor U 7!
��U .

Remark 2.2.22. —

(i) As we see from the proof, for any solutions (RU ; �RU ) and (RV ; �RV ) of the conjugate
equations for U and V , if we let �R �U = RU and �R �V = RV , then T_�_� = T for all
T 2 Mor(U; V ).
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(ii) The contravariant functor F defined by F (U) = �U and F (T ) = T_ can be made
into a tensor functor by defining F2(U; V ) 2 Mor( �V 
 �U; U 
 V ) by the identity

(F2(U; V )
 �
 �)(�
 RU 
 �)RV = RU
V :

Example 2.2.23. — Let G be a compact quantum group, and U a finite dimensional
unitary representation. By Example 2.2.3 the operators R = (1 
 ��1=2

U )r and �R =

(�1=2
U 
 1)�r solve the conjugate equations for U . Consider (R; �R) as a solution of the

conjugate equations for HU in the category Hilbf and compute T_ for T 2 B(HU ).
We have (1
 T )r = (j(T )
 1)r . It follows that T_ = j(�1=2

U T��1=2
U ).

Consider now T = �U (!), where ! 2 U (G) and �U : U (G) ! B(HU ) is the
representation defined by U , so �U (!) = (� 
 !)(U). By (1.7.1) we have � �U (!) =

j(�U (R̂(!))), where R̂ is the unitary antipode on U (G). It follows that

�U (!)_ = j(�U (�1=2!��1=2)) = � �U (R̂(�1=2!��1=2)) = � �U (Ŝ(!)):

References. — [46], [59].

2.3. FIBER FUNCTORS AND RECONSTRUCTION THEOREMS

Let C be a C� -tensor category.

Definition 2.3.1. — A tensor functor F : C ! Hilbf is called a fiber functor if it is faith-
ful (that is, injective on morphisms) and exact.

We will mainly deal with C� -tensor categories with conjugates. Then every object is a
direct sum of simple ones, hence every exact sequence splits, and therefore any linear
functor C ! Hilbf is exact. Furthermore, in this case a linear functor is faithful if
and only if the image of every simple object is nonzero. This is automatically true for
tensor functors F : C ! Hilbf , since for every nonzero object U the unit object is
a subobject of �U 
 U , and therefore C embeds into F ( �U 
 U) �= F ( �U) 
 F (U), so
F (U) 6= 0. Therefore for C� -tensor categories with conjugates a fiber functor is simply
a tensor functor F : C ! Hilbf .

Let G be a compact quantum group. The simplest example of a unitary fiber functor
on RepG is the one defined by letting F (U) = HU for every finite dimensional unitary
representation of G, while F2 , as well the action of F on morphisms, are taken to be
the identity maps. We call it the canonical fiber functor on RepG.

Theorem 2.3.2 (Woronowicz’s Tannaka-Krein duality). — Let C be a C� -tensor category
with conjugates, F : C ! Hilbf be a unitary fiber functor. Then there exist a compact quantum
group G and a unitary monoidal equivalence E : C ! RepG such that F is naturally uni-
tarily monoidally isomorphic to the composition of the canonical fiber functor RepG ! Hilbf
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with E . Furthermore, the Hopf �-algebra (C[G];�) for such a G is uniquely determined up to
isomorphism.

We may assume that C is strict. Replacing F by a naturally unitarily monoidally iso-
morphic functor we may also assume that F (1) = C and F0 is the identity map.

Consider the �-algebra End(F ) = Nat(F; F ) of natural transformations from F

to F , where we consider F simply as a functor, ignoring its tensor structure. Explicitly
this algebra can be described as follows. Choose representatives U� of the isomor-
phism classes of simple objects. Since every object in C is a direct sum of U� , a natural
transformation � : F ! F is completely determined by the maps �U� : F (U�)! F (U�).
Therefore

End(F ) �=
Y
�
B(F (U�)):

Using the tensor structure on F we can define a �-homomorphism

� : End(F )! End(F
2) �=
Y
�;�

B(F (U�)
 F (U�))

such that �(�) is determined by the commutative diagrams

F (U)
 F (V )

F2

��

�(�)U;V // F (U)
 F (V )

F2

��
F (U 
 V )

�U
V
// F (U 
 V )

;

so �(�)U;V = F �2 �U
V F2 . The homomorphisms � 
 � and � 
 � extend to homomor-
phisms End(F
2) ! End(F
3). Then (� 
 �)� = (� 
 �)� by definition of a tensor
functor.

We will see that (End(F ); �) �= (U (G); �̂) for some G. But first we need to define an
analogue of the antipode Ŝ . In view of Example 2.2.23 the formula is easy to guess. Let
us first introduce the following notation. For T 2 Mor(U; V 
W ) denote by �(T ) the
map F �2 F (T ) : F (U) ! F (V ) 
 F (W ). If (R; �R) solves the conjugate equations for U

and �U , then (�(R);�( �R)) solves the conjugate equations for F (U) and F ( �U).

Lemma 2.3.3. — For every � 2 End(F ) there exists a unique element �_ 2 End(F ) such that
if (R; �R) solves the conjugate equations for U and �U , then (�_) �U = (�U )_ , where (�U )_ is
computed using the solution (�(R);�( �R)) of the conjugate equations for F (U) and F ( �U).

Proof. — First observe that for fixed �U the map (�U )_ does not depend on the solu-
tion of the conjugate equations for U and �U . Indeed, by Proposition 2.2.5 any other
solution (R0; �R0) has the form R0 = (�
 T �)R, �R0 = (T�1 
 �) �R. Then

�(R0) = (1
 F (T �))�(R)
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Since �U commutes with F (T �) by the naturality of �, we conclude that (�U )_ is inde-
pendent of whether we use �(R) or �(R0) to define it.

Next using the naturality of � it is easy to check that if for two isomorphic objects U
and U 0 we choose the same conjugate object, then (�U )_ = (�U 0)

_ . We therefore get a
well-defined collection of maps (�_)V : F (V )! F (V ) such that if V is conjugate to U ,
then (�_)V = (�U )_ . It remains to check that these maps are natural in V .

Any morphism S : V1 ! V2 equals T_ for some morphism T : U2 ! U1 and a fixed
choice of solutions (R1; �R1) and (R2; �R2) of the conjugate equations for (U1; V1) and
(U2; V2). From �U1

F (T ) = F (T )�U2
we get

F (T )_(�U1
)_ = (�U2

)_F (T )_;

where we use �(R1) and �(R2) to define F (T )_ . Using the easily verifiable identities
F (T )_ = F (T_) = F (S), we therefore get F (S)(�_)V1

= (�_)V2
F (S).

We are now ready to define a candidate (A ;�) for (C[G];�). We take A to be
the subspace of the dual space End(F )� consisting of the elements a such that a(�)

only depends on the operators �U for finitely many objects U . More concretely, if we
identify End(F ) with

Q
� B(F (U�)), then A = ��B(F (U�))� . If a; b 2 A , then a 
 b

is a well-defined element of End(F
2)� . Therefore we can define a product on A by

ab = (a
 b)�:

Note that if a 2 B(F (U�))� and b 2 B(F (U�))� , then ab 2 �
B(F (U
))� , where the
sum is taken of the finite set of indices 
 such that Mor(U
; U� 
 U�) 6= 0. Since � is
coassociative, the product on A is associative. The algebra A is unital, with unit given
by 1(�) = �1 2 End(C) = C. Define a comultiplication �: A ! A 
A by

�(a)(!
 �) = a(!�):

This is a unital coassociative homomorphism. Define also a character " : A ! C and
a linear map S : A ! A by

"(a) = a(1) and S(a)(�) = a(�_):

Lemma 2.3.4. — (A ;�) is a Hopf algebra with counit " and antipode S .

In proving this lemma it will be convenient to use the following convention, which
will also be useful later. We will work with elements �(�) as if they were finite sums of
elementary tensors. All the computations will be valid, since for any finite set of indices
�i the image of �(�) in �i;jB(F (U�i) 
 F (U�j )) coincides with the image of a finite
sum of elementary tensors. Furthermore, we will omit sums and simply write �(�) =

�(1) 
 �(2) . This is called Sweedler’s sumless notation.
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Proof of Lemma 2.3.4. — The identities (�
")�(a) = a and ("
 �)�(a) = a are verified
immediately by applying � 2 End(F ) to both sides. The identity m(�
 S)�(a) = "(a)1

for all a is in turn equivalent to

(2.3.1) �(1)�
_
(2) = �11 for all � 2 End(F ):

Fix an object U and a solution (R; �R) of the conjugate equations for U . Using the def-
inition of _ , (1
 T )�(R) = (T_ 
 1)�(R), we compute:

((�(1)) �U (�_(2)) �U 
 �)�(R) = �(�) �U;U�(R) = F �2 � �U
UF (R) = �(R)�1:

Hence (�(1)�
_
(2)) �U = �11 2 B(F ( �U)). Since this is true for all U , we conclude that

(2.3.1) holds. Similarly, using the identity �( �R)�(T 
 1) = �( �R)�(1
 T_) for _ , one
checks that m(S 
 �)�(a) = "(a)1.

Next define an antilinear map a 7! a� by

a�(�) = �a(�_) = a(�_�):

Since �_�_� = � by Remark 2.2.22(i), we have a�� = a. It is also straightforward to
check that the map � is �-preserving. On other hand, in order to show that � is anti-
multiplicative we need to know that �(�_) = (_
_)�op(�). This is not difficult to check
directly. Alternatively, on the dual side this is equivalent to anti-multiplicativity of the
antipode S on A , and this holds in any Hopf algebra. Therefore (A ;�) is a Hopf
�-algebra.

For every U in C define an element XU 2 B(F (U))
 End(F )� by requiring

(�
 �)(XU ) = �U for all � 2 End(F ):

Clearly, XU 2 B(F (U))
A .

Lemma 2.3.5. — We have:

(i) the elements XU are unitary corepresentations of (A ;�);

(ii) if T 2 Mor(U; V ), then (F (T )
 1)XU = XV (F (T )
 1);

(iii)(F2 
 1)XU
13X

V
23 = XU
V (F2 
 1).

Proof. — (i) The identity (� 
 ")(XU ) = 1 is immediate by definition, since " = 1 2

End(F ). The identity (�
 �)(XU ) = XU
12X

U
13 is checked by applying �
 !
 � to both

sides.
Therefore XU is a corepresentation of (A ;�). As we already observed in Sec-

tion 1.6, this implies that XU is invertible and (�
S)(XU ) = (XU )�1 . Hence, for every
� 2 End(F ),

(�
 �)((XU )�1) = (�
 �_)(XU ) = (�_)U = (�_�)�U

= (�
 �_�)(XU )� = (�
 �)((XU )�):
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It follows that (XU )�1 = (XU )� .

(ii) This becomes obvious upon applying �
 � to both sides.

(iii) Applying �
 �
 � to the left hand side we obtain

F2(�
 �
 �)(XU
13X

V
23) = F2(�
 �
 �(�))(XU

13X
V
24) = F2�(�)U;V = �U
V F2;

which is exactly what we get if we apply �
 �
 � to XU
V (F2 
 1).

It is now easy to complete the proof of Woronowicz’s theorem.

Proof of Theorem 2.3.2. — By Theorem 1.6.7, (A ;�) = (C[G];�) for a compact quan-
tum group G. Identities (ii) and (iii) in Lemma 2.3.5 show then that we can define
a unitary tensor functor E : C ! RepG by letting E(U) = XU , E(T ) = F (T ) on
morphisms, and E2 = F2 . Then F is the composition of the canonical fiber functor
RepG! Hilbf with E . To show that E is a unitary monoidal equivalence it suffices to
check that the representations XU� of G are irreducible, pairwise nonequivalent, and
that they exhaust the equivalence classes of irreducible representations of G. But all
these properties follow immediately from the fact that matrix coefficients of the rep-
resentations XU� form a basis in ��B(F (U�))� = A .

The uniqueness follows by observing that if G0 is a compact quantum group and

F 0 : RepG0 ! Hilbf

is the canonical fiber functor, then (U (G0); �̂) can be identified with (End(F 0); �) con-
structed as above: an element ! 2 U (G0) considered as an element of End(F 0) acts
on F 0(U) = HU by �U (!). In order to see that this is indeed enough, note that if
E0 : C ! RepG0 is a unitary monoidal equivalence such that F 0E0 is naturally unitarily
monoidally isomorphic to F , then using this isomorphism of functors we get an iso-
morphism

(U (G); �̂) = (End(F ); �) �= (End(F 0); �) = (U (G0); �̂);

and from this obtain (C[G];�) �= (C[G0];�) by duality. We leave the details to the
reader.

Remark 2.3.6. — Theorem 1.6.7 is more than what is really needed for the proof of
Theorem 2.3.2. Namely, the key point of Theorem 1.6.7 is that under certain assump-
tions a Hopf �-algebra admits a faithful state. In the present case we could define such
a state by letting h(1) = 1 and (� 
 h)(XU�) = 0 if U� 6�= 1, and then check positivity
and faithfulness using properties of conjugate objects. We will do this in a more general
setting in the proof of Theorem 2.3.11.

Note that not every C� -tensor category admits a fiber functor.
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Example 2.3.7. — Consider the category C (�; !) from Example 2.1.2. Then by Exam-
ple 2.2.4 the object Vg�1 is conjugate to Vg , so C (�; !) is a C� -tensor category with con-
jugates. Assume F : C (�; !)! Hilbf is a fiber functor. Since Vg 
 Vg�1 = Ve = 1, the
spaces F (Vg) are one-dimensional. For every g 2 � fix a nonzero vector �g 2 F (Vg).
Then F2 : F (Vg)
F (Vh)! F (Vgh) maps �g
�h into c(g; h)�gh , and ! = @c. Therefore
a fiber functor on C (�; !) exists if and only if ! is a coboundary.

A C� -tensor category can also have fiber functors producing nonisomorphic quan-
tum groups.

Definition 2.3.8. — Compact quantum groups G1 and G2 are called monoidally equiv-
alent if the categories RepG1 and RepG2 are unitarily monoidally equivalent.

Example 2.3.9. — Assume G is a compact quantum group. By a T-valued 2-cocycle
on Ĝ we mean a unitary element E 2 U (G� G) such that

(2.3.2) (E 
 1)(�̂
 �)(E ) = (1
 E )(�
 �̂)(E ):

Given such a cocycle, we define a unitary fiber functor F : RepG ! Hilbf such that
it is the identity on objects and morphism, while the tensor structure F2 is given by
the action of E � . We will discuss this in more detail in the next chapter. The functor
F defines a new compact quantum group GE . More explicitly, the �-algebra U (GE )

can be identified with U (G), but the coproduct is different, given by

�̂E (!) = E �̂(!)E �:

It follows that we can identify C[GE ] with C[G] as vector spaces, and the coproduct �

remains the same, while the new product is given by

a �E b = m(E � � (a
 b) � E );

where !� a = (�
!)�(a) and a�! = (!
 �)�(a). The �-structure on C[GE ] is more
difficult to describe, we will return to this in a moment.

By construction the quantum groups GE and G are monoidally equivalent. Now, if
G is a genuine group, the new coproduct �̂E is in general non-cocommutative, so GE
is not a group. Therefore a group can be monoidally equivalent to a genuine quantum
group. It is more difficult, but possible, to give examples where GE is again a group, but
it is nonisomorphic to G [32, 43]. To some extent it is possible to describe completely
all pairs of monoidally equivalent compact groups [32, 43, 69].

The most nontrivial part of the proof of Theorem 2.3.2 is the construction of the an-
tipode using conjugate objects. It is therefore interesting to express the new antipode
ŜE on U (GE ) = U (G) explicitly in terms of E . Since we will consider a similar prob-
lem in Section 4.4, we will omit the computations and only give the final answer. Con-
sider the element u = m(� 
 Ŝ)(E ). Then u is invertible, with inverse u�1 = m(Ŝ 
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�)(E �) = Ŝ(u�), and we have ŜE = uŜ(�)u�1 . From this we can deduce a formula for
the �-structure on C[GE ]. Namely, if we denote the involution on C[GE ] by �E , then,

using that a�E (!) = a(ŜE (!)�), we get

a�E = (u� � a � (u�1)�)�:

Finally, we remark that the above formulas of course make sense for any Hopf alge-
bra, independently of whether it comes from a compact quantum group or not. Thus,
given a Hopf algebra (U ; �̂) and an invertible element E 2 U 
U satisfying (2.3.2),
we can define a new Hopf algebra (UE ; �̂E ), called a twisting of (U ; �̂), with UE = U

as algebras and with �̂E = E �̂(�)E �1 . Its antipode is given by ŜE = uŜ(�)u�1 , where
u = m(�
 Ŝ)(E ) is invertible, with inverse given by u�1 = m(Ŝ 
 �)(E �1).

Example 2.3.10. — In Section 2.5 we will show that two free orthogonal compact quan-
tum groups Ao(F ) and Ao(F

0), defined in Example 1.1.7, are monoidally equivalent if
and only if F �F and F 0 �F 0 have the same sign and Tr(F �F ) = Tr(F 0�F 0), while they
are isomorphic if and only if F and F 0 have the same size and F 0 = vFvt for a unitary
matrix v .

A key tool to understand the relation between monoidally equivalent quantum
groups is a linking algebra, also known as a Hopf-bi-Galois object in the algebraic
literature, which we will now introduce.

Assume that C is a strict C� -tensor category with conjugates, and E; F : C ! Hilbf
are two unitary fiber functors. As above, assume E(1) = F (1) = C and E0 = F0 = �.
For T 2 Mor(U; V 
W ) put �E(T ) = E�2E(T ) 2 B(E(U); E(V )
E(W )) and �F (T ) =

F �2 F (T ).
Consider the space Nat(E; F ) of natural transformations from E to F . It can be

identified with
Q

� B(E(U�); F (U�)). We can then define a linear map

� : Nat(E; F )! Nat(E
2; F
2)

by �(�)U;V = F �2 �U
V E2 . LetB � Nat(E; F )� be the subspace consisting of elements b
such that b(�) depends only on the operators �U for finitely many objects U . In other
words, B = ��B(E(U�); F (U�))� .

Define a product and an involution on B by

(bc)(�) = (b
 c)�(�); b�(�) = b(�_�):

Note that _ is now a well-defined map Nat(E; F ) ! Nat(F; E). For every object U de-
fine also an element XU 2 B(E(U); F (U))
B by

(�
 �)(XU ) = �U :

Theorem 2.3.11. — With the above notation we have:
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(i) B is a unital �-algebra spanned by the matrix coefficients of the elements XU ; these elements
are unitary and they satisfy the following properties:

(a) if T 2 Mor(U; V ), then (F (T )
 1)XU = XV (E(T )
 1);

(b) (F2 
 1)XU
13X

V
23 = XU
V (E2 
 1);

(c) if (R; �R) is a solution of the conjugate equations for U and �U , then

(XU
13)�(�F ( �R)
 1) = X

�U
23(�E( �R)
 1);

(�E(R)� 
 1)(XU
23)� = (�F (R)� 
 1)X

�U
13;

(ii) the linear functional ' on B defined by '(1) = 1 and (� 
 ')(XU�) = 0 for U� 6�= 1

satisfies the following orthogonality relations: if (R�; �R�) is a solution of the conjugate equations
for U� , then

(�
 ')((XU�)�(T 
 1)XU�) = ���kR�k
�2�F (R�)

�(1
 T )�F (R�)1

for all T 2 B(F (U�); F (U�)), and

(�
 ')(XU�(T 
 1)(XU�)�) = ���k �R�k
�2�E( �R�)

�(T 
 1)�E( �R�)1

for all T 2 B(E(U�); E(U�)); in particular, ' is a faithful state onB and thereforeB admits
a C� -completion.

Proof. — (i) Parts (a) and (b), as well as the statement that B is a unital algebra
spanned by the matrix coefficients of the elements XU , are simple and can be proved
in the same way as the similar statements in the proof of Theorem 2.3.2. Therefore
it remains to check that the involution is anti-multiplicative, the elements XU are
unitary and the identities in (c) hold. We will start by proving (c).

For any � 2 Nat(E; F ) we have

(�
 �)((XU )�) = (�
 �_�)(XU )� = (�_�)�U = (�_)U :

Hence, if (R; �R) is a solution of the conjugate equations for U , we can rewrite the iden-
tity ((�_)U 
 1)�F ( �R) = (1
 � �U )�E( �R) for all � as

(XU
13)�(�F ( �R)
 1) = X

�U
23(�E( �R)
 1):

The second identity in (c) can be proved similarly, but it also follows from the first one
by taking adjoints and replacing U by �U .

Next, using properties (a)-(c), we compute:

XU
13(XU

13)�(�F ( �R)
 1) = XU
13X

�U
23(�E( �R)
 1) = (F �2 
 1)XU
 �U (E( �R)
 1)

= (F �2 
 1)(F ( �R)
 1)X1 = �F ( �R)
 1:

Hence XU (XU )� = 1. The identity (XU )�XU = 1 is proved similarly.
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It remains to check that the involution is anti-multiplicative. For any objects U and V

we compute:

(XU
13X

V
23)�(F �2 
 1) = (E�2 
 1)(XU
V )� = (E�2 
 1)(XU
V )�1

= (XV
23)�1(XU

13)�1(F �2 
 1) = (XV
23)�(XU

13)�(F �2 
 1):

Therefore (XU
13X

V
23)� = (XV

23)�(XU
13)� . This implies that the involution is anti-

multiplicative, since the matrix coefficients of XU� span B .

(ii) Given indices � and �, a decomposition of �U�
U� into simple objects is defined
by isometries wi : U�i ! �U� 
 U� such that

P
i wiw

�
i = 1. Then

X
�U�
U� =

X
i

(F (wi)
 1)XU�i (E(wi)
� 
 1):

It follows that if � = �, so that the only copy of 1 in �U� 
 U� is given by the isometry
kR�k

�1R� , then (�
')(X
�U�
U�) = kR�k

�2F (R�)E(R�)
� . By (i)(b) we can write this as

(�
 �
 ')(X
�U�

13X
U�
23 ) = kR�k

�2�F (R�)�E(R�)
�:

Using (i)(c), for any T 2 B(F (U�)) we then get

�E(R�)
�
�
1
 (�
 ')((XU�)�(T 
 1)XU�)

Ð
= (�
 �
 ')

�
(�E(R�)

� 
 1)(XU�)�23(1
 T 
 1)XU�
23

Ð
= (�
 �
 ')

�
(�F (R�)

� 
 1)X
�U�

13 (1
 T 
 1)XU�
23

Ð
= kR�k

�2�F (R�)
�(1
 T )�F (R�)�E(R�)

�:

This gives the first orthogonality relation in (ii) for � = �. On the other hand, if � 6= �,
then (� 
 ')(X

�U�
U�) = 0, and a computation similar to the one above shows that
(�
 ')((XU�)�(T 
 1)XU�) = 0 for any T 2 B(F (U�); F (U�)).

The second orthogonality relation is proved similarly.
As in the proof of Theorem 1.6.7, either of the two orthogonality relations implies

that '(b�b) > 0 for all nonzero b 2 B .

Consider now the compact quantum groups GE and GF defined by the functors E
and F . The space Nat(E; F ) is an End(F )-End(E)-bimodule. By taking the duals of
the maps End(F )
Nat(E; F )! Nat(E; F ) and Nat(E; F )
 End(E)! Nat(E; F ) we
get unital �-homomorphisms

�F : B ! C[GF ]
B and �E : B !B 
 C[GE]

such that (�
�F )�F = (�F
�)�F and (�E
�)�E = (�
�E)�E , where �E and �F denote
the comultiplications on C[GE] and C[GF ]. Explicitly, let XU

E 2 B(E(U))
C[GE] and
XU
F 2 B(F (U)) 
 C[GF ] be the unitaries constructed in the proof of Theorem 2.3.2.

Then
(�
 �F )(XU ) = (XU

F )12X
U
13 and (�
 �E)(XU ) = XU

12(XU
E )13:
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The linking algebra B equipped with the actions �E and �F of GE and GF allows
one to deduce a lot of properties of one quantum group from the other. We refer the
reader to [23, 81, 88] for examples.

Our main examples of C� -tensor categories will appear as categories of modules.
Let (U ; �̂) be a Hopf �-algebra. Denote the counit by "̂ and the antipode by Ŝ . Con-
sider the category RepU of finite dimensional unital �-representations of U . It is a
C� -tensor category, with the tensor product of representations � : U ! B(H�) and
# : U ! B(H#) defined by

(�
 #)(!) = (�
 #)�̂(!):

The counit "̂ is the unit object in RepU .
For a finite dimensional representation � : U ! B(H) define the contragredient

representation �c : U ! B(H�) by

(�c(!)f)(v) = f(�(Ŝ(!))v) for ! 2 U �; f 2 H�; v 2 H:

If H is a Hilbert space, then identifying H� with �H we have �c(!) = j(�(Ŝ(!))), so

�c(!)�� = �(Ŝ(!))��. In general �c is neither a �-representation, nor is it equivalent to
a �-representation, and correspondingly not every object in RepU has a conjugate.

Lemma 2.3.12. — For any finite dimensional unital �-representation � : U ! B(H) the fol-
lowing conditions are equivalent:

(i) � has a conjugate in RepU ;

(ii) the contragredient representation �c is unitarizable, that is, it is equivalent to a �-represen-
tation;

(iii)Mor(�; �cc) contains a positive invertible operator.

Proof. — (i))(ii) Assume # : U ! B(H#) is conjugate to �, with (R; �R) solving the
conjugate equations. Consider also the maps r : C! �H 
H and �r : C! H 
 �H from
Example 2.2.2. By Proposition 2.2.5 the map T = (R� 
 1)(1
 �r) : H# ! �H is a linear
isomorphism. But it is easy to check that the map �r is a morphism 1 ! �
 �c (while
r is a morphism 1! �c 
 �cc). It follows that T 2 Mor(#; �c), so �c is unitarizable.

(ii))(iii) By assumption there exists an invertible operator T 2 B( �H) such that the
representation # = T�c(�)T�1 is �-preserving. Then T 2 Mor(�c; #), hence j(T ) 2

Mor(#c; �cc). One the other hand, starting with the identity

Tj(�(Ŝ(!))) = #(!)T;

and applying j and taking the adjoints, we get

j(T )��(Ŝ(!)�) = j(#(!�))j(T )�:
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Replacing ! by Ŝ(!)� we see that j(T )� 2 Mor(�; #c). Therefore Mor(�; �cc) contains
the positive invertible operator j(T )j(T )� .

(iii))(i) By assumption there exists a positive invertible operator � 2 B(H)

such that �(Ŝ2(!)) = ��(!)��1 . It is then easy to check that the representation
# = j(�)1=2�c(�)j(�)�1=2 is �-preserving. As we already remarked above, we have
r 2 Mor(1; �c 
 �cc) and �r 2 Mor(1; �
 �c). Therefore, as j(�)1=2 2 Mor(�c; #) and
� 2 Mor(�; �cc), letting

R = (j(�)1=2 
 ��1)r = (1
 ��1=2)r 2 Mor(1; #
 �);

�R = (1
 j(�)1=2)�r = (�1=2 
 1)�r 2 Mor(1; �
 #);

we see that # is conjugate to �.

Taking a C� -tensor subcategory C of RepU with conjugates together with the
canonical fiber functor on it, we get a compact quantum group. We will assume that
C is full, that is, the space of morphisms is the same as in RepU for any pair of objects
in C . Note that by our standing assumptions on tensor categories this implies that
the class of representations in C is closed, up to isomorphism, under taking direct
sums and subrepresentations. Note also that by Lemma 2.3.12 the property of having
conjugates is equivalent to requiring that with every representation � the category
C contains a representation equivalent to �c . In this case we do not need the full
strength of Woronowicz’s theorem, the corresponding quantum group is described
via a duality result as follows.

Theorem 2.3.13. — Assume (U ; �̂) is a Hopf �-algebra, and C � RepU is a full C� -tensor
subcategory with conjugates and 1 = "̂. Let A be the subspace of U � spanned by the matrix
coefficients of all representations � in C . Then A is a Hopf �-algebra with multiplication, in-
volution and comultiplication defined by

(ab)(!) = (a
 b)�̂(!); a�(!) = a(Ŝ(!)�); �(a)(!
 �) = a(!�):

Furthermore, (A ;�) = (C[G];�) for a compact quantum group G, and if for every � in C
we define an element U� 2 B(H�)
A by (�
 !)(U�) = �(!) for ! 2 U , then the functor
F : C ! RepG defined by F (�) = U� , F (T ) = T on morphisms and with F2 = �, is a
unitary monoidal equivalence of categories.

Proof. — The multiplication is well-defined on A , since the product of matrix coeffi-
cients of finite dimensional representations of U is a matrix coefficient of the tensor
product of the representations. To show that the involution is well-defined note that if
a 2 A is a matrix coefficient of a representation � in C then a� is a matrix coefficient
of �c . By the assumption that C has conjugates, the representation �c is equivalent to
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a representation in C . Hence a� 2 A . It is now easy to check that A is a unital �-al-
gebra with unit "̂.

For every � in C we have (�
�)(U�) = (U�)12(U�)13 , since by applying �
!
� we
see that this identity is equivalent to multiplicativity of �. Therefore �: A ! A 
A

is well-defined. Define also S : A ! A by S(a) = aŜ and " : A ! C by "(a) = a(1).
Note that S is well-defined for the same reason as that the involution is. It is now routine
to check that (A ;�) is a Hopf �-algebra with counit " and antipode S ; this is essentially
what we claimed already in Section 1.6 when discussing dual Hopf �-algebras.

For every � in C we have (� 
 ")(U�) = �(1) = 1. Therefore U� is a corepresen-
tation of A . We now proceed as in the proof of Lemma 2.3.5(i). The element U� is
invertible and (�
 S)(U�) = U�1

� . Hence, for every ! 2 U ,

(�
 !)(U�1
� ) = (�
 Ŝ(!))(U�) = �(Ŝ(!)) = �(Ŝ(!)�)�

= (�
 Ŝ(!)�)(U�)� = (�
 !)(U��):

Thus U�1
� = U�� , so U� is unitary.

Therefore A is spanned by matrix coefficients of finite dimensional unitary corep-
resentations. By Theorem 1.6.7 we conclude that (A ;�) = (C[G];�) for a compact
quantum group G. Clearly, the functor F : C ! RepG defined by F (�) = U� ,
F (T ) = T on morphisms and with F2 = �, is a unitary tensor functor. It is also clear
that Mor(�; #) = Mor(U�; U#) for any � and # in C . Choosing representatives
�� of the equivalence classes of irreducible representations in C we conclude that
the representations U�� of G are irreducible, pairwise nonequivalent, and their ma-
trix coefficients span C[G]. Hence these representations exhaust the equivalence
classes of irreducible representations of G. It follows that F is a unitary monoidal
equivalence.

Note once again that Theorem 1.6.7 is more than what is needed in the above proof,
since Lemma 2.3.12 and the assumption that C has conjugates make a significant part
of the proof of Theorem 1.6.7 redundant.

References. — [14], [20], [21], [23], [32], [43], [69], [74], [76], [81], [88], [96].

2.4. DRINFELD-JIMBO DEFORMATION OF COMPACT LIE GROUPS

Let G be a simply connected semisimple compact Lie group and g be its complex-
ified Lie algebra. Fix a nondegenerate symmetric ad-invariant form (�; �) on g such
that its restriction to the real Lie algebra of G is negative definite. The standard nor-
malization of this form requires that when restricting this form to a Cartan subalgebra
and considering the dual form, we get (�; �) = 2 for every short root in every simple
factor of g, but we do not assume this unless stated otherwise. From this data we will
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now define, for every q > 0, q 6= 1, a compact quantum group Gq . For q = 1 we put
G1 = G.

First we will define a deformation of the universal enveloping algebra Ug. In order
to fix notation recall briefly the structure of Ug. This is a Hopf �-algebra with invo-
lution such that the real Lie algebra of G consists of skew-adjoint elements, and with
comultiplication defined by

�̂(X) = X 
 1 + 1
 X for X 2 g:

Fix a maximal torus T � G, and denote by h � g its complexified Lie algebra. For
every root � 2 � � h� put d� = (�; �)=2. Let H� 2 h be the element corresponding
to the coroot �_ = �=d� under the identification h �= h� , so that (H�; H) = �_(H)

for H 2 h. Under the same identification let h� 2 h be the element corresponding
to � 2 h� , so h� = d�H� for � 2 �. Fix a system of simple roots f�1; : : : ; �rg. For every
positive root � 2 �+ choose

E� 2 g� = fX 2 g j [H;X] = �(H)X for all H 2 hg

such that (E�; E
�
�) = d�1

� , and put F� = E�� 2 g�� ; then [E�; F�] = H� . For the simple
roots �1; : : : ; �r we will use the subindices i instead of �i . Then the elements Ei; Fi; Hi ,
1 � i � r , generate g as a Lie algebra. Finally, recall that the Cartan matrix is defined
by aij = (�_i ; �j) = (�i; �j)=di . We now define a new Hopf �-algebra by deforming the
relations satisfied by the elements Ei; Fi; qdiHi .

Definition 2.4.1. — For q > 0, q 6= 1, the quantized universal enveloping algebra Uqg

is defined as the universal unital algebra generated by elements Ei , Fi , Ki , K�1
i , 1 �

i � r , satisfying the relations

KiK
�1
i = K�1

i Ki = 1; KiKj = KjKi;

KiEjK
�1
i = q

aij
i Ej ; KiFjK

�1
i = q

�aij
i Fj ;

EiFj � FjEi = �ij
Ki � K�1

i

qi � q�1
i

;

1�aijX
k=0

(�1)k
"

1� aij

k

#
qi

Ek
i EjE

1�aij�k

i = 0;

1�aijX
k=0

(�1)k
"

1� aij

k

#
qi

F k
i FjF

1�aij�k

i = 0;

where

"
m

k

#
qi

=
[m]qi !

[k]qi ![m� k]qi !
, [m]qi ! = [m]qi[m� 1]qi : : : [1]qi , [n]qi =

qni � q�ni

qi � q�1
i

and

qi = qdi .
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This is a Hopf �-algebra with coproduct �̂q defined by

�̂q(Ki) = Ki 
 Ki; �̂q(Ei) = Ei 
 1 + Ki 
 Ei; �̂q(Fi) = Fi 
 K�1
i + 1
 Fi;

and with involution given by K�i = Ki , E�i = FiKi , F �i = K�1
i Ei .

Note that the counit "̂q and the antipode Ŝq are given by

"̂q(Ki) = 1; "̂q(Ei) = "̂q(Fi) = 0;

Ŝq(Ki) = K�1
i ; Ŝq(Ei) = �K�1

i Ei; Ŝq(Fi) = �FiKi:

Lemma 2.4.2. — The Hopf �-algebras Uq�1g and Uqg are isomorphic.

Proof. — In order to distinguish between the generators of Uq�1g and Uqg we will use
the superindices q�1 and q . We can then define an isomorphism by

E
q�1

i 7! qiK
q
i F

q
i = q�1

i E
q�
i ; F

q�1

i 7! qi(K
q
i )
�1F

q
i = qiF

q�
i ; K

q�1

i 7! K
q
i :

We will next define a class of representations of Uqg. First let us introduce more no-
tation. Let !1; : : : ; !r 2 h

� be the fundamental weights, so !i(Hj) = �ij . We denote
by Q and P the root and weight lattices, respectively. For a weight � denote by �(i) the
coefficients of � in the basis !1; : : : ; !r , so �(i) = �(Hi) = (�; �i)=di . If V is a Uqg-mod-
ule and � 2 P is an integral weight, denote by V (�) � V the subspace of vectors of
weight �, defined by

V (�) = f� 2 V j Ki� = q
�(i)
i � = q(�;�i)� for all ig:

Definition 2.4.3. — A Uqg-module V is called admissible, or of type 1, if

V = ��2P V (�):

Denote by Cq(g) the C� -category of finite dimensional admissible unitary Uqg-mod-
ules.

Clearly, Cq(g) is a C� -tensor category. In order to check that it has conjugates, let
us compute Ŝ2

q . For an element � =
P

i ni�i of the root lattice put K� = Kn1
1 : : : Knr

r . We
then have

K�EiK
�1
� = q(�;�i)Ei; K�FiK

�1
� = q�(�;�i)Fi:

Consider the weight � = !1 + � � � + !r . It is known that � also equals half the sum of
the positive roots, so 2� 2 Q.

Lemma 2.4.4. — For any ! 2 Uqg we have Ŝ2
q (!) = K�1

2� !K2� .

Proof. — This is immediate from

Ŝ2
q (Ki) = Ki; Ŝ2

q (Ei) = K�1
i EiKi = q�aiii Ei = q�2diEi; Ŝ2

q (Fi) = q2diFi;

as (2�; �i) = 2di�(i) = 2di .
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We thus see that in every finite dimensional admissible unitary Uqg-module V the
square of the antipode is implemented by a positive invertible operator, the image
of K�2� . By Lemma 2.3.12 it follows that the contragredient module is unitarizable and
its unitarization gives a conjugate object to V in RepUqg. The contragredient module
is clearly admissible. Therefore Cq(g) has conjugates. Hence, by Theorem 2.3.13, it
defines a compact quantum group.

Definition 2.4.5. — The Drinfeld-Jimbo q -deformation of G is the compact quantum
group Gq with Hopf �-algebra (C[Gq];�q) defined as the subspace of the dual space
(Uqg)

� spanned by the matrix coefficients of all finite dimensional admissible unitary
modules, and with multiplication, involution and comultiplication defined by

(ab)(!) = (a
 b)�̂q(!); a�(!) = a(Ŝq(!)�); �q(a)(!
 �) = a(!�):

Note that a priori the Hopf �-algebra (C[Gq];�q) does not completely deter-
mine C(Gq), as it can have different C� -completions. But as we will see in Section 2.7,
in the present case we have only one completion to a compact quantum group. Until
then we can define C(Gq) to be, for example, the C� -envelope of C[Gq]. Note also
that by Lemma 2.4.2 the quantum groups Gq�1 and Gq are isomorphic.

By Theorem 2.3.13 we have a canonical unitary monoidal equivalences of categories
F : Cq(g) ! RepGq . By this equivalence, if U is a finite dimensional unitary repre-
sentation of Gq , then the �-representation �U : Uqg ! B(HU ) defined by �U (!) =

(� 
 !)(U) is equivalent to an admissible representation, hence it is itself admissible.
It follows that F is not just an equivalence, but an isomorphism of categories. We can
therefore identify Cq(g) with RepGq .

Remark 2.4.6. — In addition to admissible modules Uqg has one-dimensional modules
defined by Ei 7! 0, Fi 7! 0, Ki 7! �1. It can be shown, see [18, Section 10.1], that
any finite dimensional module decomposes into a direct sum of admissible ones ten-
sored with these one-dimensional modules. It follows that the category RepUqg of all fi-
nite dimensional unitary Uqg-modules is still a C� -tensor category with conjugates, and
the corresponding compact quantum group is what can be denoted by Gq o (Z=2Z)r ,
where on the level of Uqg the action of (Z=2Z)r is defined as follows: the element 1 in
the i-th copy of Z=2Z acts by mapping Ei to �Ei , Fi to �Fi , and by leaving all other
generators intact. It also follows that Cq(g) can be defined as the category of finite di-
mensional unitary Uqg-modules such that the elements Ki act by positive operators.

We will next describe, without proof, the structure of the category Cq(g). It is very
similar to the classical case.

A vector � in a Uqg-module V 6= 0 is called a highest weight vector of weight � 2 P+

if � 2 V (�), Ei� = 0 for all i, and V = (Uqg)�. If such a vector exists, then � is uniquely
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determined and V is called a highest weight module. Clearly, any such module is admis-
sible. The same argument as for Ug shows that for every � 2 P+ there exists a unique
irreducible highest weight module V� of weight �.

Theorem 2.4.7. — We have:

(i) for every � 2 P+ the module V� is finite dimensional and unitarizable;

(ii) any finite dimensional admissible Uqg-module decomposes into a direct sum of the modules
V� ; in particular, any such module is completely reducible and unitarizable;

(iii)the dimensions of V� , as well as the dimensions of the weight spaces V�(�), are the same as
in the classical case;

(iv) the multiplicities m�
�;� in the decompositions

V� 
 V� �=
M
�2P+

V� � � � � � V�| {z }
m
�
�;�

are the same as in the classical case.

Proofs of all these statements can be found for example in [18, Section 10.1].

From now on we fix a Hilbert space structure on V� making it a unitary module.
When necessary, we will denote by �� the representation of Uqg on V� . Fix also a unit
vector �� 2 V�(�).

As a consequence of complete reducibility, if V is a finite dimensional admissible
Uqg-module and � 2 V (�) is such that Ei� = 0 for all i, then there exists a unique mor-

phism V� ! V mapping �� into �. In particular, V� embeds into V

�(1)
!1


� � �
 V

�(r)
!r .

It follows that C[Gq] is algebraically generated by the matrix coefficients of the funda-
mental modules V!i ; in fact, for all simple groups except the spin groups it suffices to
take one particular fundamental module, see the discussion in [75]. It is, however, not
easy to work out a complete list of relations. To the best of our knowledge this has been
done only for the groups SU(n) and Sp(n), see [51].

Example 2.4.8. — Consider the group G = SU(2) and the standardly normalized in-
variant form on g = sl2(C). Let us show that for 0 < q < 1 the quantum group Gq is
exactly the quantum group SUq(2) introduced in Example 1.1.5.

The algebra Uqg in this case is generated by elements E; F; K; K�1 satisfying the re-
lations

KK�1 = K�1K = 1; KE = q2EK; KF = q�2FK; [E; F ] =
K � K�1

q � q�1
:

The weight lattice is identified with 1
2Z. The modules Vs for nonnegative half-integers s

can be explicitly written as follows. There exists an orthonormal basis f�ss; �
s
s�1; : : : ; �

s
�sg
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in Vs such that

E�si = qi+1([s� i]q[s + i + 1]q)
1=2�si+1;

F�si = q�i([s + i]q[s� i + 1]q)
1=2�si�1;

K�si = q2i�si ;

recall that [n]q = (qn � q�n)=(q � q�1). In particular, the fundamental representa-
tion �1=2 of Uqg, written in matrix form with respect to the basis f�1=2

1=2; �
1=2
�1=2g, is

K 7!

 
q 0

0 q�1

!
; E 7!

 
0 q1=2

0 0

!
; F 7!

 
0 0

q�1=2 0

!
:

The contragredient representation �c1=2 has the form

K 7!

 
q�1 0

0 q

!
; E 7! �

 
0 0

q�1=2 0

!
; F 7! �

 
0 q1=2

0 0

!

with respect to the dual basis; recall that in matrix form we have �c1=2(!) = �1=2(Ŝq(!))t .

We see that

 
0 �q1=2

q�1=2 0

!
intertwines �c1=2 with �1=2 . It follows that if U = 

a b

c d

!
2 Mat2(C[Gq]) is the unitary representation of Gq corresponding to �1=2 ,

then  
0 �q1=2

q�1=2 0

! 
a� b�

c� d�

!
=

 
a b

c d

! 
0 �q1=2

q�1=2 0

!
:

Hence d = a� and b = �qc� . Therefore we can define a surjective Hopf �-algebra
homomorphism � : C[SUq(2)]! C[Gq] by �(�) = a and �(
) = c.

In order to prove that it is injective, consider the subspace Pn � C[SUq(2)] of poly-
nomials in �, �� , 
, 
� of degree n. Any such polynomial can be written as a sum of
monomials of the form �i
j(
�)l and (��)i
j(
�)l with i+ j + l � n. There are exactly
(k + 1)2 such monomials of degree k . Therefore dim Pn �

Pn
k=0(k + 1)2 .

On the other hand, since Vk=2 embeds into V 
k1=2 , the space �(Pn) contains the ma-
trix coefficients of the simple modules Vk=2 for all k � n. Hence

dim�(Pn) �
nX

k=0

(dim Vk=2)2 =
nX

k=0

(k + 1)2:

It follows that � is injective on Pn for all n, so it is injective on the whole algebra
C[SUq(2)].

Note that if the invariant form is not standardly normalized, then SU(2)q �= SUqs(2)

for some s 2 R� . For simple groups it makes little sense not to normalize the invariant
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form. The main point in not doing this in the semisimple case, is that this way our def-
inition of the q -deformation captures such quantum groups as e.g., SUq(2)� SUqs(2).

Example 2.4.9. — Consider the group G = SU(n) and the standardly normalized in-
variant form on g. The quantum group Gq is denoted by SUq(n). In this case to deduce
relations in the algebra one uses two properties of the fundamental representation U .
One is that its n-th tensor power contains a trivial subrepresentation. This plays the role
of the determinant condition. The other one is that there is an explicit endomorphism
of U�U that is a deformation of the flip; this will be discussed in Section 2.6. Together
with counting arguments similar to the case n = 2 one then gets the following descrip-
tion of C[SUq(n)] [26, 83]. It is a universal unital �-algebra generated by elements uij ,
1 � i; j � n, satisfying the relations

uikujk = qujkuik; ukiukj = qukjuki for i < j;

uilujk = ujkuil for i < j; k < l;

uikujl � ujluik = (q � q�1)ujkuil for i < j; k < l;

detq(U) = 1;

u�ij = (�q)j�i detq(U
î
ĵ
);

where U = (uij)i;j and detq(U) =
P

w2Sn
(�q)`(w)uw(1)1 : : : uw(n)n , with `(w) being the

number of inversions in w 2 Sn , and where U î
ĵ

is the matrix obtained from U by re-

moving the i-th row and the j -th column. The comultiplication is given by �q(uij) =P
k uik 
 ukj .

Although the C� -tensor category RepGq looks quite similar to RepG, these cate-
gories are not equivalent. One way to see this is to compare the intrinsic dimensions
of simple objects. Note first that by definition we have a canonical unital �-homomor-
phism Uqg ! U (Gq) = C[Gq]

� with weakly� dense image. We continue to denote
by �̂q the ‘coproduct’ U (Gq)! U (Gq � Gq).

Proposition 2.4.10. — The Woronowicz character f1 for Gq is equal to the image of K�2�

in U (Gq). In particular, dimq V� = Tr��(K�2�) = Tr��(K2�) for any � 2 P+ .

Proof. — By Remark 1.7.7 the element f1 is completely characterized by the properties
that it is positive, invertible, it implements the square of the antipode, and Tr��(f1) =

Tr��(f
�1
1 ) for all � 2 P+ . We already know that the element K�2� satisfies all these

properties except the last one. This property, in turn, follows from the fact that the set
of weights of V� is invariant under the Weyl group action, and w0� = ��, where w0 is
the longest element in the Weyl group. Another possibility is to argue as follows. Since
both f1 and K�2� implement the square of the antipode, the image of K�2� is equal
to zf1 for some central element z 2 U (Gq). Furthermore, z is positive and group-like,
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that is, it is invertible and �̂q(z) = z
 z , since both K�2� and f1 have these properties.
As we will see at the end of Section 3.1, the unit is the only element with such properties.

It is one of our goals to understand the exact relation between the representation
categories of Gq and G.

As a consequence of the above proposition we see that the unitary antipode R̂q

on U (Gq) is given by

(2.4.1) R̂q(!) = K1=2
2� Ŝq(!)K�1=2

2� :

Note that the element K1=2
2� makes sense in U (Gq), but not in Uqg. Nevertheless the

unitary antipode is well-defined on Uqg:

(2.4.2) R̂q(Ki) = K�1
i ; R̂q(Ei) = �qiK

�1
i Ei; R̂q(Fi) = �q�1

i FiKi:

One topic which we are not going to touch at all is the structure of the C� -alge-
bras C(Gq). It can be shown that these C� -algebras are of type I, their irreducible rep-
resentations can be completely classified [53] and using this one can get very detailed
information about the structure of C(Gq) [72].

References. — [18], [26], [20], [51], [53], [72], [75], [83], [96].

2.5. REPRESENTATION CATEGORY OF SUq(2)

In Example 2.4.8 we described all irreducible finite dimensional admissible
Uqsl2 -modules for q > 0. It is also not difficult to understand how their tensor products
decompose into irreducibles. Namely, using the notation of that example, consider
the tensor product Vs 
 V1=2 for some s 2 1

2N. Then the vector �ss 
 �1=2
1=2 has weight

s + 1=2 and is killed by E , so there exists a unique embedding Vs+1=2 ,! Vs 
 V1=2

mapping �s+1=2
s+1=2 into �ss 
 �1=2

1=2 . For similar reasons there exists a unique embedding
Vs�1=2 ,! Vs 
 V1=2 such that

�s�1=2
s�1=2 7! [2s]1=2

q �ss 
 �1=2
�1=2 � qs+1=2�ss�1 
 �1=2

1=2:

For dimension reasons this exhausts all irreducible submodules of Vs 
 V1=2 , so

Vs 
 V1=2
�= Vs+1=2 � Vs�1=2:

In particular, for s = 1=2 we see that V1=2 is self-conjugate, which was already used in
Example 2.4.8. It is also easy to see that by induction we get

Vs 
 Vt �= Vjs�tj � Vjs�tj+1 � � � � � Vs+t
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for all s; t 2 1
2Z+ . Our goal in this section is to show that these rules essentially charac-

terize the representation categories Rep SUq(2).

We thus start with an arbitrary strict C� -tensor category C with conjugates. Assume
U is a nonzero self-conjugate object in C , so there exist R; �R : 1! U 
 U solving the
conjugate equations. If in addition U is irreducible, then �R = �R for some � 2 C� .
Then the conjugate equations read as

��(R� 
 �)(�
 R) = �; �(R� 
 �)(�
 R) = �;

so � is real. Replacing R by j�j1=2R and �R by j�j�1=2 �R, we may therefore assume that
�R = ��R, with � = 1 or � = �1. Let us assume that this is the case even if U is
not irreducible. To exclude completely trivial cases let us also assume that kRk > 1

(otherwise di(U) = 1, so U is irreducible and U 
 U �= 1). Thus we assume that we
have an object U and a morphism R : 1! U 
 U such that

(2.5.1) kRk2 = d and � �(R� 
 �)(�
 R) = �;

with d > 1 and � = 1 or � = �1.
We want to understand the structure of morphisms that can be obtained from R and

the identity morphisms by taking tensor products, adjoints and compositions. It is con-
venient to think of all these morphisms as living in one large algebra. Namely, consider
the space �n;m�0 Mor(U
n; U
m). Composition of morphisms and involution define a
structure of a �-algebra on this space. This algebra has a unique completion to a C� -al-
gebra, since for every N 2 N the finite dimensional �-algebra �N

n;m=0 Mor(U
n; U
m)

can be identified with the C� -algebra End(�N
k=0U


k). Thus we can say that our goal is
to understand the C� -subalgebra generated by morphisms of the form

(2.5.2) �
 � � � 
 �| {z }
i


R
 �
 � � � 
 �| {z }
j

: U
(i+j) ! U
(i+j+2):

Let us try to axiomatize properties of these morphisms.
For a real number d > 1 and a number � = �1, consider the universal C� -algebra

Ad;� generated by mutually orthogonal projections zn , n � 0, and partial isometries
vij , i; j � 0, such that

v�ijvij = zi+j ; vijv
�
ij � zi+j+2;

v�i;j+1vi+1;j = ��d�1zi+j+1;

vi;j+k+2vi+j;k = vi+j+2;kvi;j+k;

v�i;j+k+2vi+j+2;k = vi+j;kv
�
i;j+k:

Denote by Ad;�(n; m) the subspace zmAd;�zn of Ad;� .
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Lemma 2.5.1. — For every n � 0, the C� -algebra Ad;�(n; n) is generated, as a unital C� -al-
gebra with unit zn , by the projections eni = vi;n�i�2v

�
i;n�i�2 , 0 � i � n � 2. These projections

satisfy the relations

enienj = enjeni if ji� jj � 2; enienjeni = d�2eni if ji� jj = 1:

Proof. — First of all notice that the relations in Ad;� imply that any element in the �-al-
gebra generated by zm and vij can be written as a linear combination of projections zm
and elements of the form

(2.5.3) vi1j1 : : : vikjkv
�
p1q1

: : : v�plql :

An element of the form (2.5.3) lies in Ad;�(n
0; n00) for some n0 and n00 , and if it is

nonzero and n0 = n00 , then k = l . It therefore suffices to show that any element of the
form (2.5.3) with k = l lies in the algebra A0

d;� generated by the projections zm and
eij . We will show this by induction on k .

For k = 1 consider an element vijv�pq . We may assume that i+ j = p+q , as otherwise
this element is zero. By taking, if necessary, the adjoint of this element we may also
assume that p � i. Then

vijv
�
pq = (��d)p�ivij(v

�
ijvi+1;j�1) : : : (v�p�1;q+1vpq)v

�
pq 2 A0

d;�:

Assume the result is true for k� 1. In order to prove it for k , it suffices to show that
vijA

0
d;�v
�
pq � A0

d;� . For this, in turn, it suffices to show that vij(vstv�st)v
�
pq 2 A0

d;� . Since
vstv
�
st = v�s;t+2vs+2;t , this is true by the case k = 1.

The relations for eni are verified by a straightforward computation. For example, we
have

enien;i+1eni = vi;n�i�2(v�i;n�i�2vi+1;n�i�3)(v�i+1;n�i�3vi;n�i�2)v�i;n�i�2

= d�2vi;n�i�2v
�
i;n�i�2 = d�2eni:

The relations satisfied by the projections eni , called the Temperley-Lieb relations,
are well studied, see e.g., [36]. In particular, it is known that unless d � 2 or d =

2cos(�=k) for an integer k � 4, for all sufficiently large n there exist no nonzero pro-
jections eni , 0 � i � n�2, satisfying these relations, so vij = 0 for all i; j such that i+ j

is large enough, and hence Ad;� = 0. We will briefly explain how to show that Ad;� = 0

for d 2 (1; 2), d 6= 2 cos(�=k), a bit later.
Therefore the algebra Ad;� is of interest to us only if d � 2 or d = 2cos(�=k)

(k � 4). For such d it can be shown that Ad;� is indeed nonzero. Namely, by construc-
tion Ad;� 6= 0 if there exists a C� -tensor category with a morphism R : 1 ! U 
 U sat-
isfying (2.5.1), since we then have a �-homomorphism from Ad;� into the completion
of �n;m�0 Mor(U
n; U
m) mapping d1=2vij into the morphism U
(i+j) ! U
(i+j+2)
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defined by (2.5.2), and zn into the unit of End(U
n). For d � 2 such morphisms R
are easy to find in Hilbf .

Example 2.5.2. — For n � 2 and H = Cn , identify �H with H and consider the canoni-
cal solution (r; r) of the conjugate equations for (H;H), so r(1) =

P
i ei
 ei . By Propo-

sition 2.2.5 any other solution has the form

R = (1
 F )r; �R = ((F �)�1 
 1)r = (1
 �F�1)r

for some F 2 GLn(C); recall that we denote by �F the matrix obtained from F by taking
the complex conjugate of every entry. This solution satisfies �R = ��R if and only if
F �F = ��1. We also have kRk2 = Tr(F �F ). Therefore any matrix F 2 GLn(C) such
that Tr(F �F ) = d and F �F = ��1 defines a morphism RF = (1
F )r satisfying (2.5.1),
and this way we get all solutions of (2.5.1) in Hilbf , for Hilbert spaces of dimension at
least 2, up to unitary isomorphisms.

Taking F =

 
0 ��

��1 0

!
, with �2 2 [�1; 1] n f0g, we get d = j�2 + ��2j and � =

sign(�2), so already for such matrices we obtain all possible combinations of d � 2 and
� = �1.

On the other hand, for d = 2cos(�=k) it is clearly impossible to find a morphism R

satisfying (2.5.1) in Hilbf , since for Hilbert spaces relations (2.5.1) imply dimU � d <

2 and therefore U must be one-dimensional and d = 1. Nevertheless the required
morphisms can be found in some other C� -tensor categories [15, 93], but since such
categories cannot have unitary fiber functors and therefore cannot lead to compact
quantum groups, we will be less concerned with this case.

Fix now d � 2 or d = 2cos(�=k) (k � 4), and � = �1. We construct a C� -tensor
category TL d;� as follows. We start with a set of objects indexed by integers n � 0.
Write n for the object corresponding to n. Put Mor(n; m) = Ad;�(n; m). The �-alge-
bra structure on Ad;� defines composition of morphisms and involution. Next define
tensor product by n
 m = n + m. The tensor product of morphisms is completely de-
termined by the rules vij 
 zn = vi;j+n , zn 
 vij = vn+i;j . This way we get a category
that satisfies all the properties of a strict C� -tensor category except that conditions (vi)
(existence of direct sums) and (vii) (existence of subobjects) in Definition 2.1.1 do
not hold. It is, however, not difficult to complete the category to get these conditions
satisfied.

Assume C is a category having all the properties of a strict C� -tensor category except
existence of direct sums and subobjects. First complete it with respect to direct sums.
For this, consider the category C 0 consisting of n-tuples (U1; : : : ; Un) of objects in C
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for all n � 1. Morphisms are defined by

Mor((U1; : : : ; Un); (V1; : : : ; Vm)) = �i;j Mor(Ui; Vj):

Composition and involution are defined in the obvious way. Note that the norm is
uniquely determined by the C� -condition kTk2 = kT �Tk, and for its existence we
do need condition (ii)(c) in Definition 2.1.1 to be satisfied in C . The tensor product
of (U1; : : : ; Un) and (V1; : : : ; Vm) is defined as the nm-tuple consisting of objects Ui
 Vj
ordered lexicographically. The category C 0 has direct sums: they can be defined by
concatenation. We next complete C 0 with respect to subobjects. For this, consider the
category C 00 consisting of pairs (U; p), where U is an object in C 0 and p is a projection
in End(U). Morphisms are defined by

Mor((U; p); (V; q)) = qMor(U; V )p;

and tensor products by (U; p) 
 (V; q) = (U 
 V; p 
 q): The category C 00 is called the
idempotent completion, or the Karoubi envelope, of C 0 . It is a strict C� -tensor cate-
gory. It is not difficult to see that the construction of C 00 from C is universal in the
sense that if B is a C� -tensor category and F : C ! B is a unitary tensor functor,
then F extends uniquely, up to a natural unitary monoidal isomorphism, to a unitary
tensor functor C 00 !B .

Applying the above procedure to our category with objects n and morphisms
Mor(n; m) = Ad;�(n; m), we get a strict C� -tensor category TL d;� . It is called
the Temperley-Lieb category for d � 2 and the reduced Temperley-Lieb category
for d = 2 cos(�=k).

The unit 1 in TL d;� is the object 0. The object 1 is simple, and by analogy with
SUq(2) we denote it by U1=2 . The category TL d;� is generated by U1=2 , in the sense
that any simple object in TL d;� is isomorphic to a subobject of U
n1=2 . Consider the
morphism

R1=2 = d�1=2v00 : 1! U1=2 
 U1=2:

Then the pair (R1=2;��R1=2) solves the conjugate equations for U1=2 , so the simple
object U1=2 is self-conjugate and di(U1=2) = d. Since TL d;� is generated by an object
that has a conjugate, it is a C� -tensor category with conjugates.

Given a C� -tensor category C and a unitary tensor functor F : TL d;� ! C , con-
sider the object U = F (U1=2) and morphism R = F �2 F (R1=2)F0 : 1 ! U 
 U . Then R

satisfies (2.5.1), that is,

kRk2 = d and � �(R� 
 �)(�
 R) = �:

Conversely, starting from these relations we can construct a unitary tensor functor.

Theorem 2.5.3. — Assume C is a strict C� -tensor category, U is an object in C , and R : 1!

U 
 U is a morphism satisfying (2.5.1) for some d > 1 and � = �1. Then d � 2 or d =
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2 cos(�=k) (k � 4), and there exists a unique, up to a natural unitary monoidal isomorphism,
unitary tensor functor F : TL d;� ! C such that F (U1=2) = U and F (R1=2) = F2RF

�
0 .

If (U 0; R0) is another such pair in C , with the same d and �, and F 0 : TL d;� ! C is the
corresponding functor, then the functors F and F 0 are naturally unitarily monoidally isomorphic
if and only if there exists a unitary T : U ! U 0 such that R0 = (T 
 T )R.

Proof. — As we already discussed before Example 2.5.2, given (U; R) satisfying
(2.5.1), we can define a �-homomorphism � from Ad;� into the completion of
�n;m�0 Mor(U
n; U
m). From this we conclude that d � 2 or d = 2 cos(�=k) (k � 4),
since otherwise Ad;� = 0 and we would get End(U
n) = 0 for all n � 0. To define a
unitary tensor functor F , put

F (U
n1=2) = U
n for n � 0; F (T ) = �(T ) for T 2 Mor(U
n1=2; U

m
1=2):

We also define F0 : 1! 1 and F2(U
n1=2; U

m
1=2) : U
n
U
m ! U
(n+m) to be the identity

maps. Since TL d;� is the completion of the category consisting of objects U
n1=2 with
respect to direct sums and subobjects, these formulas define a unique, up to a natural
unitary monoidal isomorphism, unitary tensor functor.

Assume now that we have another unitary tensor functor ~F : TL d;� ! C such that
~F (U1=2) = U and ~F (R1=2) = ~F2R ~F �0 . The tensor structure ~F2 of ~F defines unitaries
�U
n1=2

: ~F (U1=2)
n ! ~F (U
n1=2) such that

~F2(U
n1=2; U

m
1=2)(�U
n1=2


 �U
m1=2
) = �

U

(n+m)
1=2

for all n; m � 0, with �1 = ~F0 and �U1=2
= �. It is easy to check that

�
U

(i+j+2)
1=2

F (vij) = ~F (vij)�U
(i+j)
1=2

:

This implies that the unitaries �U
n1=2
define a natural unitary monoidal isomorphism �

between the functors F and ~F restricted to the subcategory consisting of objects U
n1=2 ,
n � 0. SinceTL d;� is the completion of this category with respect to direct sums and
subobjects, � extends uniquely to a natural unitary monoidal isomorphism between F

and ~F .

For the second part of the theorem we have to show that if F; F 0 : TL d;� ! C

are two unitary tensor functors, U = F (U1=2), U 0 = F 0(U1=2), R = F �2 F (R1=2)F0 and
R0 = F 0�2 F 0(R1=2)F 00 , then F and F 0 are naturally unitarily monoidally isomorphic if
an only if there exists a unitary T : U ! U 0 such that R0 = (T 
 T )R. In one direction
this is obvious. Namely, if � : F ! F 0 is a natural unitary monoidal isomorphism, then
we can take T = �U1=2

.
Conversely, assume we have a unitary T : U ! U 0 such that R0 = (T 
 T )R. By the

proof of the first part of the theorem we may assume that

F (U
n1=2) = U
n; F0 = �; F2(U
n1=2; U

m
1=2) = �;
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and similarly for F 0 . Then the unitaries T
n : F (U
n1=2) ! F 0(U
n1=2) define a natural
unitary monoidal isomorphism between the functors F and F 0 restricted to the sub-
category consisting of objects U
n1=2 , n � 0. This isomorphism extends uniquely to a
natural unitary monoidal isomorphism between F and F 0 .

Let us apply this theorem to C = Hilbf . For d = 2 cos(�=k) we already know that
there are no morphisms in Hilbf satisfying (2.5.1), hence no unitary fiber functors
TL d;� ! Hilbf . On the other hand, for d � 2 in Example 2.5.2 we described all solu-
tions of (2.5.1) in Hilbf up to unitary isomorphisms. Namely, every matrix F 2 GLn(C)

such that Tr(F �F ) = d and F �F = ��1 defines such a solution RF . Denote by 'F a uni-
tary fiber functorTL d;� ! Hilbf such that 'F (U
m1=2) = (Cn)
m , 'F (R1=2) = RF and

'F;2(U
k1=2; U

m
1=2) = �.

Corollary 2.5.4. — For any d � 2 and � = �1, we have:

(i) any unitary fiber functor TL d;� ! Hilbf is naturally unitarily monoidally isomorphic
to 'F for some F 2 GLn(C) (such that Tr(F �F ) = d and F �F = ��1);

(i) two unitary fiber functors 'F and 'F 0 are naturally unitarily monoidally isomorphic if and
only if the matrices F and F 0 have the same size and there exists a unitary matrix v such that
F 0 = vFvt .

Proof. — By the above discussion we only have to prove part (ii). But this is immediate,
since for a unitary matrix v we have

(v 
 v)RF = (v 
 vF )r = (1
 vFvt)r;

and therefore the condition RF 0 = (v 
 v)RF is equivalent to F 0 = vFvt .

Remark 2.5.5. — It is not difficult to classify matrices F up to equivalence F � vFvt .
First of all notice that this is the same as classifying the anti-linear operators JF up to
unitary conjugation, where J : Cn ! Cn is the complex conjugation. The condition
F �F = ��1 implies that if F = ujF j is the polar decomposition, then (Ju)2 = ��1 and
(Ju)jF j(Ju)� = jF j�1 . It follows that Cn decomposes into a direct sum H� �H0 �H+

such that the restriction of jF j to H� has eigenvalues < 1, JuH� = H+ and jF jJu =

JujF j�1 on H� , jF j acts on H0 as the identity operator and Ju acts on H0 as an anti-
linear isometry with square ��1. It is easy to see that such an anti-linear isometry on H0

is unique up to a unitary conjugation (see the proof of Lemma 4.4.1), and for � = 1 it
exists only if H0 is even-dimensional. Hence the unitary conjugacy class of JF is com-
pletely determined by the eigenvalues of jF j that are < 1 counted with multiplicities.
To summarize, for fixed d � 2, � = �1 and n � 2 there is a one-to-one correspon-
dence between equivalence classes of F 2 GLn(C) such that Tr(F �F ) = d, F �F = ��1

and, assuming that n is even if � = 1, vectors (�1; : : : ; �k), 0 � k � n=2, such that
0 < �1 � � � � � �k < 1 and

Pk
i=1(�2

i + ��2
i ) = d � (n � 2k). If � = 1 and n is odd,
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then no such F exists. In particular, if n = 2, then for every d � 2 and � = �1 we have
exactly one equivalence class.

By Woronowicz’s Tannaka-Krein duality, the functors 'F define compact quantum
groups. These are nothing else than the free orthogonal quantum groups Ao(F ) de-
fined in Example 1.1.7.

Proposition 2.5.6. — For d � 2 and � = �1, assume F 2 GLn(C) is such that Tr(F �F ) =

d and F �F = ��1. Then there exists a unique, up to a natural unitary monoidal isomorphism,
unitary monoidal equivalence E : TL d;� ! RepAo(F ) such that E(U1=2) = U , where U
is the fundamental representation of Ao(F ). The functor 'F is naturally unitarily monoidally
isomorphic to the composition of the canonical fiber functor RepAo(F )! Hilbf with E .

Proof. — By definition we have F 2 Mor(U c; U), whence RF = (1
 F )r 2 Mor(1; U �

U). It follows that there exists a unitary tensor functor E : TL d;� ! RepAo(F ) such
that E(U
m1=2) = U
m , E(R1=2) = RF and E2(U
k1=2; U


m
1=2) = �. On the other hand,

by Woronowicz’s Tannaka-Krein duality the functor 'F can be thought of as a uni-
tary monoidal equivalence between TL d;� and RepG for some compact quantum
group G. Put V = 'F (U1=2). Then

RF = (1
 F )r 2 Mor(1; V � V );

or equivalently, F 2 Mor(V c; V ). By universality of Ao(F ), it follows that there exists
a unital �-homomorphism (Ao(F );�) ! (C(G);�) mapping the matrix coeffi-
cients of U into those of V . This homomorphism defines a unitary tensor functor
~E : RepAo(F ) ! RepG. The functors 'F and ~EE are naturally unitarily monoidally
isomorphic as functors TL d;� ! RepG. Since 'F is an equivalence of categories,
this implies that E is a unitary monoidal equivalence between TL d;� and the full
C� -tensor subcategory of RepAo(F ) generated by U . But since the matrix coefficients
of U generate Ao(F ) as a unital C� -algebra, this subcategory coincides with RepAo(F ).

The uniqueness part of the proposition is equivalent to the statement that any uni-
tary monoidal autoequivalence of TL d;� that maps U1=2 into itself is naturally uni-
tarily monoidally isomorphic to the identity functor. Such an autoequivalence corre-
sponds to a morphism R : 1 ! U1=2 
 U1=2 satisfying (2.5.1), and we have to show
that R = (T 
 T )R1=2 for a unitary T . But this is obvious, since U1=2 is irreducible and
therefore R is a scalar multiple of R1=2 .

Our next goal is to understand the structure of simple objects inTL d;� for d � 2.
For � = 1 we already know it, since by the previous proposition TL d;1 is unitarily
monoidally equivalent to Rep SUq(2), where q 2 (0; 1] is such that d = q + q�1 (see
Examples 1.1.7 and 2.5.2). But we will give an argument that works equally well for � =

�1 and does not rely on quantized universal enveloping algebras.
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Recall that in Section 2.2 we introduced traces TrU on End(U) for any C� -tensor
category with conjugates. For the categoriesTL d;� , in order to simplify the notation,
denote TrU
n1=2

by Trn . Recall also that zn denotes the unit in End(U
n1=2) = Ad;�(n; n).

Therefore Trn(zn) = di(U

n
1=2) = dn . We will write v for v00 = d�1=2R1=2 and e for e2;0 =

vv� . Then vij = zi 
 v 
 zj and eni = zi 
 e
 zn�i�2 .

Lemma 2.5.7. — Assume d � 2 or d = 2 cos(�=k) (k � 4), and � = �1. Then for any
n � 2 and any morphism T 2 End(U


(n�1)
1=2 ) in TL d;� , we have

Trn((T 
 z1)(zn�2 
 e)) = d�2 Trn(T 
 z1) = d�1 Trn�1(T ):

This property of the trace is called the Markov property. In order to prove it, we will
introduce partial traces.

Assume we are given a strict C� -tensor category C with conjugates. For every object
U choose a standard solution (RU ; �RU ) of the conjugate equations for U . Then define
linear maps TrU 
� : End(U 
 V )! End(V ) by

(TrU 
�)(T ) = (R�U 
 �)(�
 T )(RU 
 �):

By Proposition 2.2.15 these maps are independent of the choice of a standard solution.
Similarly, define �
 TrU : End(V 
 U)! End(V ) by

(�
 TrU )(T ) = (�
 �R�U )(T 
 �)(�
 �RU ):

Note that the morphisms TrU (�
TrV ) and TrV (TrU 
�) coincide and, by the compu-
tation in the proof of Theorem 2.2.18, are equal to TrU
V .

Proof of Lemma 2.5.7. — Since Trn = Trn�1(� 
 Tr1), we just have to show that (� 


Tr1)(zn�2 
 e) = d�1zn�1 . Equivalently, we have to show that (�
 Tr1)(e) = d�1z1 , or
in other words,

(�
 Tr1)(R1=2R
�
1=2) = �:

But this identity follows immediately from ��(�
 R�1=2)(R1=2 
 �) = �.

For every n � 2 consider the subalgebra In of Ad;�(n; n) generated by the projec-
tions eni , 0 � i � n � 2. It is an ideal, hence it has the form (zn � fn)Ad;�(n; n) for a
central projection fn in Ad;�(n; n). Since Ad;�(n; n) = In + Czn , this projection is either
zero or minimal in Ad;�(n; n). Put f1 = z1 and f0 = z0 .

Lemma 2.5.8. — Assume d � 2 and � = �1. Let q > 0 be such that d = q + q�1 . Then
in Ad;� for every n � 2 we have:

(i) the projection fn is nonzero and Trn(fn) = [n + 1]q ;

(ii) fn = fn�1 
 z1 � d
[n� 1]q

[n]q
(fn�1 
 z1)(zn�2 
 e)(fn�1 
 z1);
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(iii)the projection d
[n� 1]q

[n]q
(fn�1 
 z1)(zn�2 
 e)(fn�1 
 z1) is equivalent to fn�2 .

Proof. — We will prove this by induction on n.

For n = 2 we have f2 = z2 � e. Since e = vv� , we have Tr2(e) = Tr0(z0) = 1, so
Tr2(f2) = d2 � 1 = q2 + 1 + q�2 = [3]q . Properties (ii) and (iii) are obvious.

Assume now that the lemma is true for n. To prove it for n + 1, we start with part
(iii). Consider the elements

p =
d[n]q

[n + 1]q
(fn 
 z1)(zn�1 
 e)(fn 
 z1); x =

�
d[n]q

[n + 1]q

�1=2

(fn 
 z1)(zn�1 
 v):

Then p = xx� . On the other hand,

x�x =
d[n]q

[n + 1]q
(zn�1 
 v�)(fn 
 z1)(zn�1 
 v):

Since

fn 
 z1 = fn�1 
 z2 � d
[n� 1]q

[n]q
(fn�1 
 z2)(zn�2 
 e
 z1)(fn�1 
 z2)

and

(z1 
 v�)(e
 z1)(z1 
 v) = d�2(z1 
 v�)(z1 
 e)(z1 
 v) = d�2z1;

we get

x�x =
d[n]q

[n + 1]q

�
fn�1 � d�1 [n� 1]q

[n]q
fn�1

�
= fn�1;

as d[n]q� [n�1]q = [n+ 1]q . We see that p is indeed a projection, and p is equivalent
to fn�1 in Ad;� .

Turning to (ii), we already know that p is a projection. Since p � fn 
 z1 , it follows
that ~fn+1 = fn 
 z1 � p is a projection. Since fn is orthogonal to eni for all i � n � 2,
the projection ~fn+1 is orthogonal to en+1;i = eni 
 z1 for all i � n� 2. We also have

d[n]q
[n + 1]q

(zn�1 
 e)(fn 
 z1)(zn�1 
 e) = (zn�1 
 v)x�x(zn�1 
 v�) = fn�1 
 e;

and this implies that

p(zn�1 
 e) = (fn 
 z1)(fn�1 
 e) = (fn 
 z1)(zn�1 
 e);

since fn � fn�1
 z1 . Therefore ~fn+1 = fn
 z1� p is orthogonal to zn�1
 e = en+1;n�1 ,
hence ~fn+1 � fn+1 . On the other hand, since fn+1 � fn 
 z1 and fn+1 is orthogonal
to zn�1 
 e, we have

~fn+1fn+1 = (fn 
 z1)fn+1 = fn+1:

Hence ~fn+1 = fn+1 . This proves (ii).
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Finally, using (ii) and Lemma 2.5.7 we compute:

Trn+1(fn+1) = dTrn(fn)�
[n]q

[n + 1]q
Trn(fn) = d[n + 1]q � [n]q = [n + 2]q;

which finishes the proof of the lemma for n + 1.

For d � 2 and � = �1, denote by Un=2 (n � 2) a simple object in TL d;� defined
by the minimal projection fn 2 End(U
n1=2). Let us also write U0 for 1. Note that by

part (i) of the above lemma we have di(Us) = [2s + 1]q for all s 2 1
2Z+ .

Theorem 2.5.9. — For any d � 2 and � = �1, the simple objects Us , s 2 1
2Z+ , in TL d;�

are pairwise nonisomorphic, and any simple object in TL d;� is isomorphic to one of them. For
any s; t 2 1

2Z+ we have

Us 
 Ut �= Ujs�tj � Ujs�tj+1 � � � � � Us+t:

Proof. — The objects Us , s 2 1
2Z+ , in TL d;� are pairwise nonisomorphic sim-

ply because they have different intrinsic dimensions. Alternatively, by the proof of
Lemma 2.5.1 we have Ad;�(n � 2; n) =

Pn�2
i=0 vi;n�i�2Ad;�(n � 2; n � 2), there are no

nonzero morphisms U
k1=2 ! U
n1=2 for k 6� n (mod 2), and any morphism U
k1=2 ! U
n1=2

for k < n such that k � n (mod 2) factors through U

(n�2)
1=2 . This implies that fnT = 0

for any morphism T : U
k1=2 ! U
n1=2 with k < n, so that Un=2 cannot be isomorphic
to Uk=2 for k < n.

By Lemma 2.5.8 we have fn�1 
 z1 = fn + pn , where pn is a projection equivalent
to fn�2 . This implies that

U(n�1)=2 
 U1=2
�= Un=2 � U(n�2)=2 for n � 2:

From this the claimed formula for Us 
 Ut , t = n=2, is obtained by a simple induction
on n, using that

(Us 
 U(n+1)=2)� (Us 
 U(n�1)=2) �= (Us 
 Un=2)
 U1=2 for n � 1:

It remains to show that any simple object inTL d;� is isomorphic to one of Us . For
this it suffices to show that the tensor powers U
n1=2 decompose into multiple copies
of Us . But this is again easy to check by induction on n.

The above arguments, with small modifications, work also for d = 2 cos(�=k). The
main difference is that eventually the projections fn become equal to zero. These ar-
guments also show where the restrictions on d < 2 come from.

Briefly, assume d 2 (1; 2) is such that Ad;� 6= 0, so that we can define the category
TL d;� . Let c > 3 be such that d = 2 cos(�=c). Put q = e�i=c , so that d = [2]q . The
induction argument in the proof of Lemma 2.5.8 works as long as the numbers [n +

1]q = sin(�(n+1)=c)
sin(�=c) remain strictly positive. Let k � 4 be the integer such that k � 1 <

c � k . We then get that Trk�1(fk�1) = [k]q . If c 6= k , then Trk�1(fk�1) < 0, so we
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get a contradiction. On the other hand, if c = k , then we conclude that fn = 0 for all
n � k� 1. In this case the categoryTL d;� contains only k� 1 nonisomorphic simple
objects Un=2 , 0 � n � k � 2,

Un=2 
 U1=2
�= U(n+1)=2 � U(n�1)=2 for 1 � n � k � 3;

and U(k�2)=2 
 U1=2
�= U(k�3)=2 . We leave the details to the reader.

Theorem 2.5.9 characterizes the categories TL d;� in the following sense.

Theorem 2.5.10. — Assume C is a C� -tensor category with conjugates such that its set of iso-
morphism classes of simple objects has representatives Vs , s 2 1

2Z+ , such that

Vs 
 Vt �= Vjs�tj � Vjs�tj+1 � � � � � Vs+t:

Then C is unitarily monoidally equivalent toTL d;� for uniquely defined d � 2 and � = �1.

Proof. — We may assume that C is strict. The unit in C must be isomorphic to V0 .
It follows that 1 is a subobject of V1=2 
 V1=2 , hence V1=2 is self-conjugate. Put d =

di(V1=2), and � to be the sign of �(R� 
 �)(� 
 R), where R is a nonzero morphism
1! V1=2 
 V1=2 (recall the discussion at the beginning of the section). Then by The-
orem 2.5.3 there exists a unitary tensor functor F : TL d;� ! C such that F (U1=2) =

V1=2 . Comparing the decompositions of Un=2 
 U1=2 and Vn=2 
 V1=2 into simple ob-
jects, an easy induction argument shows that F (Un=2) �= Vn=2 for all n if d � 2, and
F (Un=2) �= Vn=2 for n � k � 2 and V(k�1)=2 is a zero object for d = 2 cos(�=k). In the
latter case we get a contradiction, as V(k�1)=2 was assumed to be simple. Hence d � 2

and F is a unitary monoidal equivalence of categories.
It remains to show that d and � are uniquely determined. The object U1=2 inTL d;�

(d � 2) can, for example, be characterized as follows: it is a unique, up to an isomor-
phism, object in TL d;� with minimal intrinsic dimension among simple objects that
are nonisomorphic to the unit object. This uniquely recovers d and � from TL d;� .

Returning to quantum groups, the results of this section can be summarized as fol-
lows.

Theorem 2.5.11. — We have:

(i) every free orthogonal quantum group Ao(F ) is monoidally equivalent to SUq(2) for a
uniquely defined q 2 [�1; 1] n f0g; namely, for q such that Tr(F �F ) = jq + q�1j and
sign(F �F ) = � sign(q);

(ii) two free orthogonal quantum groups Ao(F ) and Ao(F
0) are isomorphic if and only if the

matrices F and F 0 have the same size and there exists a unitary matrix v such that F 0 = vFvt ;

(iii) if G is a compact quantum group with representation category as in the formulation of
Theorem 2.5.10, then the universal form of G is isomorphic to Ao(F ) for some F .
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Proof. — (i) By Proposition 2.5.6 the representation category of Ao(F ) is unitarily
monoidally equivalent to TL d;� , where d = Tr(F �F ) and � = � sign(F �F ). By
Theorem 2.5.10 the numbers d and � are uniquely determined by the category. By
Example 1.1.7, describing SUq(2) as a free orthogonal quantum group, this gives the
result.

(ii) An isomorphism of compact quantum groups Ao(F ) and Ao(F
0) defines a

unitary monoidal equivalence of their representation categories that intertwines their
canonical fiber functors. We can identify these categories withTL d;� for some d � 2

and � = �1. We then get a unitary monoidal autoequivalence ofTL d;� intertwining
the fiber functors 'F and 'F 0 that define Ao(F ) and Ao(F

0). Such an autoequivalence
must map U1=2 into an isomorphic object by the proof of Theorem 2.5.10. As was
shown in the proof of Proposition 2.5.6, it follows that the autoequivalence is naturally
unitarily monoidally isomorphic to the identity functor. Therefore the fiber functors
'F and 'F 0 are naturally unitarily monoidally isomorphic. By Corollary 2.5.4 this im-
plies that the matrices F and F 0 have the same size and there exists a unitary matrix v

such that F 0 = vFvt .
The converse follows easily by definition of free orthogonal quantum groups, as well

as from Corollary 2.5.4, since naturally unitarily monoidally isomorphic unitary fiber
functors define isomorphic Hopf �-algebras.

(iii) By Theorem 2.5.10 the representation category of G is unitarily monoidally
equivalent to TL d;� for some d � 2 and � = �1. The canonical fiber functor
RepG ! Hilbf defines a unitary fiber functor TL d;� ! Hilbf . By Corollary 2.5.4
this functor is naturally unitarily monoidally isomorphic to 'F for some F . Hence
the Hopf �-algebra of matrix coefficients of finite dimensional representations of G is
isomorphic to that of Ao(F ). It follows that (Cu(G);�) �= (Ao(F );�).

Finishing this section, we note that the representation categories of most of the com-
pact quantum groups we have encountered so far can be characterized by some intrin-
sic properties, see the references.

References. — [3], [4], [7], [13], [14], [15], [22], [36], [50], [73], [74], [79], [80], [91],
[93], [98], [99].

2.6. BRAIDED AND RIBBON CATEGORIES

If G is a compact group, then for any representations U and V of G the flip map
HU 
 HV ! HV 
 HU defines an equivalence between U � V and V � U . This is no
longer the case for quantum groups, when �̂ is not cocommutative. Nevertheless, it
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can happen that the representations U � V and V � U are still equivalent in a natural
way. This leads to the following definition.

Definition 2.6.1. — A braiding on a C� -tensor category C is a collection of natural iso-
morphisms �U;V : U 
 V ! V 
 U such that the hexagon diagram

(V 
 U)
W

�

��

(U 
 V )
W
� //�
�oo U 
 (V 
W )

�1;23

��
V 
 (U 
W )

�
� // V 
 (W 
 U) (V 
W )
 U
�oo

and the same diagram with � replaced by ��1 both commute.

When a braiding is fixed, the category C is called braided. If in addition �2 = �,
then C is called symmetric.

A monoidal equivalence F between braided C� -tensor categories C and C 0 is
called braided if the diagram

F (U)
 F (V )
F2 //

�0

��

F (U 
 V )

F (�)

��
F (V )
 F (U)

F2 // F (V 
 U)

commutes.

It may seem natural to require the braiding to be unitary. In our main examples,
however, it will be self-adjoint, that is, �U;V = ��V;U .

We will mainly be interested in braidings on the representation category RepG of
a compact quantum group G. Consider the forgetful functor F : RepG! Hilbf , that
is, F (U) = HU on objects and F (T ) = T on morphisms. Then � followed by the flip
�: HV 
 HU ! HU 
 HV defines a natural transformation R from F
2 into itself.
As we have already used in Section 2.3, the algebra End(F
n) can be identified with
U (Gn), so R 2 U (G � G). More concretely, R is the unique element in U (G � G)

such that
�U;V = �(�U 
 �V )(R ):

We will often simply write � = �R .
It easy to check that the defining properties of � translate into the following prop-

erties of R .

Definition 2.6.2. — An R-matrix for G is an invertible element R 2 U (G � G) such
that

(i) R �̂(�)R �1 = �̂op;

(ii) (�
 �̂)(R ) =R13R12 and (�̂
 �)(R ) =R13R23 .
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Thus we have a one-to-one correspondence between braidings on RepG and R-ma-
trices.

Note that the condition �� = � is equivalent to R � = R21 , while the condition
�2 = � is equivalent to R �1 =R21 .

Example 2.6.3. — Let G be the dual of a discrete abelian group �. Then U (G� G) is
the algebra of functions on ���, so an invertible element in U (G�G) is a function ��

�! C� . Since �̂op = �̂, condition (i) is satisfied for any such function R . Condition
(ii) means that R is a bi-quasi-character, that is, R (a + b; c) = R (a; c)R (b; c) and
R (a; b + c) =R (a; b)R (a; c) for all a; b; c 2 �.

Example 2.6.4. — Consider the q -deformation Gq of a simply connected semisimple
compact Lie group. An element of U (Gq�Gq) is determined by its action on the mod-

ules �V� 
 V� , where �V� denotes the conjugate to V� , so !�� = R̂q(!)��. It can be shown
that there exists an R-matrix Rq such that

(2.6.1) Rq(��� 
 ��) = q�(�;�)��� 
 ��:

This completely determines Rq , since the vector ��� 
 �� is cyclic, as can be easily
checked using that �� is a highest weight vector and ��� is a lowest weight vector, so
that Fi��� = 0. The R-matrix Rq has the form

(2.6.2) Rq = q
P

i;j(B
�1)ijHi
Hj

Y
�2�+

expq�
((1� q�2

� )F� 
 E�);

where B is the matrix ((�_i ; �
_
j ))i;j , Hi is the self-adjoint element in U (Gq) such that

Ki = qdiHi , the product is taken with respect to a particular order on the set �+ of
positive roots, q� = qd� ,

expq(!) =
1X
n=0

qn(n+1)=2 !n

[n]q!
;

and E� (resp. F�) is a polynomial in K�1
i and Ei (resp. Fi) such that KiE� = q(�i;�)E�Ki

(resp. KiF� = q�(�i;�)F�Ki), see [18, Theorem 8.3.9] (in the conventions of [18] we
have q = eh , Ki = e�dihHi , Ei = X�i and Fi = X+

i ).
Note that the series expq�

((1 � q�2
� )F� 
 E�) is convergent in the weak� topology

on U (Gq � Gq) = (C[Gq] 
 C[Gq])� , since the elements E� and F� act by nilpotent
operators on every finite dimensional admissible Uqg-module. Note also that (2.6.1)
indeed holds, because (F� 
 E�)(��� 
 ��) = 0, Hi

��� = �(�; �_i )��� , Hj�� = (�; �_j )��

and
P

i;j(B
�1)i;j(�; �

_
i )(�; �_j ) = (�; �):

Finally, observe that the element (Rq)
�
21 has the form Y

�2�+

expq�
((1� q�2

� ) ~F� 
 ~E�)

!
q
P

i;j(B
�1)ijHi
Hj ;
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where ~E� = F �� (resp. ~F� = E�� ) is again a polynomial in K�1
i and Ei (resp. Fi) such

that Ki
~E� = q(�i;�) ~E�Ki (resp. Ki

~F� = q�(�i;�) ~F�Ki). It follows that (Rq)
�
21(��� 
 ��) =

q�(�;�)��� 
 �� , hence (Rq)
�
21 =Rq .

From now on we consider the category RepGq = Cq(g) as a braided C� -tensor cat-
egory with braiding �Rq .

Let us establish a number of general properties of braidings and R-matrices.

Theorem 2.6.5. — For any braiding on a strict C� -tensor category we have:

(i) (�W 
 �U;V )(�U;W 
 �V )(�U 
 �V;W ) = (�V;W 
 �U )(�V 
 �U;W )(�U;V 
 �W );

(ii) �1;U = �U;1 = �.

Proof. — We will only show (i), leaving (ii) to the reader. By the hexagon relations the
left hand side in (i) equals (�W
�U;V )�U
V;W : By naturality this is equal to �V
U;W (�U;V 


�W ); which is exactly the right hand side in (i), again by the hexagon relations.

Properties (i) and (ii) of R-matrices in the following theorem are a direct translation
of the properties of braidings, but it is equally easy to deduce them from scratch.

Theorem 2.6.6. — Assume R is an R-matrix for a compact quantum group G. Then

(i) R12R13R23 =R23R13R12 (Yang-Baxter equation);

(ii) ("̂
 �)(R ) = 1 = (�
 "̂)(R ):

(iii)(Ŝ 
 �)(R ) =R �1 and (�
 Ŝ)(R �1) =R ;

(iv) (Ŝ 
 Ŝ)(R ) =R = (R̂
 R̂)(R ).

Proof. — (i) Since (�̂
 �)(R ) =R13R23 , by applying the flip to the first two factors
we also get (�̂op 
 �)(R ) =R23R13 . On the other hand,

(�̂op 
 �)(R ) =R12(�̂
 �)(R )R �1
12 =R12R13R23R

�1
12 ;

hence R23R13 =R12R13R23R
�1
12 .

(ii) By applying "̂ 
 � 
 � to (�̂ 
 �)(R ) = R13R23 we get R = ("̂ 
 �)(R )R ,
whence ("̂
�)(R ) = 1. Similarly, using (�
�̂)(R ) =R13R12 we get (�
"̂)(R ) = 1.

(iii) As in the case of corepresentations in Section 1.6, applying m(�
 Ŝ)
 � to (�̂


�)(R ) = R13R23 we get 1 = R (Ŝ 
 �)(R ). Similarly, applying � 
 m(Ŝ 
 �) to (� 


�̂)(R �1) =R �1
12 R

�1
13 we get 1 = (�
 Ŝ)(R �1)R �1 .

(iv) The identity (Ŝ 
 Ŝ)(R ) = R follows immediately from (iii). Since
Ŝ = (Ad �1=2)R̂, it follows that

(�1=2 
 �1=2)(R̂
 R̂)(R )(��1=2 
 ��1=2) =R :

But R commutes with (�1=2 
 �1=2), since

R (�1=2 
 �1=2) =R �̂(�1=2) = �̂op(�1=2)R = (�1=2 
 �1=2)R :
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Hence (R̂
 R̂)(R ) =R .

Our next goal is to introduce a so called ribbon structure on braided C� -tensor cat-
egories with conjugates. This will lead to some interesting identities for braidings, but
overall this notion will play only a peripheral role for us. It is, however, an important
notion in more general categories than C� -categories. We refer the reader to [48] for
a thorough discussion and for an explanation of the term ‘ribbon’. One nice property
of ribbon categories is that they allow for a notion of dimension of an object. In par-
ticular, for braided C� -tensor categories with conjugates we will see a relation between
the intrinsic dimension and its more algebraic counterparts.

Definition 2.6.7. — A twist on a braided C� -tensor category C with conjugates is a col-
lection � of natural isomorphisms �U : U ! U such that

�U
V = (�U 
 �V )�V;U�U;V and � �U = (�U )_:

When a twist is fixed, C is called a ribbon C� -category.

Note that by naturality of � and the proof of Lemma 2.3.3, the morphism (�U )_

does not depend on the choice of a solution of the conjugate equations for U and �U ,
so the second condition in the definition of a twist is meaningful. Furthermore, the
proof of that lemma shows that for any collection � of natural isomorphisms we can
define a collection �_ of natural isomorphisms such that (�_) �U = (�U )_ for any U with
conjugate �U . Therefore the second condition on the twist can be written as �_ = �.

As we already mentioned, given a twist we can define dimension of an object.
Namely, consider the scalar in End(1) = C1 defined as the composition

1
�R
�! U 
 �U

�U
�
���! U 
 �U

�U; �U
��! �U 
 U

R�
�! 1:

Using Proposition 2.2.5 it is easy to check that it is independent of the choice of �U

and a solution (R; �R) of the conjugate equations. This scalar is called the quantum
dimension of U and is denoted by dimq U . In order to distinguish it from the quan-
tum dimension on RepG defined in Section 2.2 we will instead write dim�

q U . It can be
shown that dim�

q is multiplicative on tensor products, additive on direct sums, and that
dim�

q
�U = dim�

q U . The last property is immediate from the following lemma.

Lemma 2.6.8. — Assume C is a strict braided C� -tensor category, and (R; �R) is a solution of
the conjugate equations for an object U . Then

R��U; �U (T 
 �) �R = �R�� �U;U (T_ 
 �)R for all T 2 End(U):

Proof. — Let us first show that

(2.6.3) �U; �U = ( �R� 
 � �U 
 �U )(�U 
 ��1
�U; �U

 �U )(�U 
 � �U 
 R):
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By the hexagon identities we have �U 
 ��1
�U; �U

= ��1
U
 �U; �U

(�U; �U 
 � �U ). Observe next that

( �R� 
 � �U )��1
U
 �U; �U

= ��1
1; �U

(� �U 

�R�) = � �U 


�R�:

It follows that
( �R� 
 � �U )(�U 
 ��1

�U; �U
) = (� �U 


�R�)(�U; �U 
 � �U ):

Hence the right hand side of (2.6.3) equals

(� �U 

�R� 
 �U )(�U; �U 
 � �U 
 �U )(�U 
 � �U 
 R) = �U; �U :

Similarly it is proved that

(2.6.4) � �U;U = (�U 
 � �U 
 R�)(�U 
 ��1
�U; �U

 �U )(R
 � �U 
 �U );

by first checking that (� �U 
 R�)(��1
�U; �U

 �U ) = (R� 
 � �U )(� �U 
 � �U;U ).

Using identities (2.6.3) and (2.6.4) we now compute:

R��U; �U (T 
 �) �R = R�( �R� 
 �
 �)(�
 ��1
�U; �U

 �)(�
 �
 R)(T 
 �) �R

= ( �R� 
 R�)(T 
 ��1
�U; �U

 �)( �R
 R)

= �R�(T 
 �)(�
 �
 R�)(�
 ��1
�U; �U

 �)( �R
 �
 �)R

= �R�(T 
 �)� �U;UR = �R�� �U;U (�
 T )R

= �R�� �U;U (T_ 
 �)R:

Our goal is to show that every braided C� -tensor category with conjugates has a
canonical ribbon structure. In order to formulate the result recall that in Section 2.5
we introduced partial traces TrU 
� and �
 TrV on End(U 
 V ).

Theorem 2.6.9. — Let C be a strict braided C� -tensor category with conjugates. For every object
U put �U = (TrU 
�)(�U;U ) 2 End(U). Then �U = (� 
 TrU )(�U;U ), �U is invertible with
inverse equal to (TrU 
�)(��1

U;U ) = (�
TrU )(��1
U;U ), the collection � = (�U )U is a twist on C ,

and dim�
q coincides with the intrinsic dimension di . If in addition � is self-adjoint, then � is

self-adjoint, and if � is unitary, then � is unitary.

Proof. — We proceed in several steps.

Step 1. The maps �U are natural in U .

Assume T 2 Mor(U; V ). In order to show that �V T = T�U it suffices to check that
TrU (S�V T ) = TrU (ST�U ) for all S 2 Mor(V; U). We have

TrU (S�V T ) = TrU (TrV 
�)((�
 S)�U;U (�
 T )) = TrV
U ((T 
 S)�V;U );

and

TrU (ST�U ) = TrU (TrU 
�)((�
 ST )�U;U ) = TrU
U ((�
 S)�V;U (T 
 �)):

The last expression equals TrV
U ((T 
 S)�V;U ) by the tracial property of Tr. Hence
�V T = T�U .
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Step 2. We have �U
V = (�U 
 �V )�V;U�U;V .

Using the hexagon identities we can write

�U
V;U
V = (�U 
 �U;V 
 �V )(�U;U 
 �V 
 �V )(�U 
 �U 
 �V;V )(�U 
 �V;U 
 �V ):

By the proof of Theorem 2.2.18 we have, with the obvious notation, TrU
V 
� 
 � =

(TrV 
� 
 �)(TrU 
� 
 � 
 �) on End(U 
 V 
 U 
 V ). Applying TrU 
� 
 � 
 � to the
above identity we get

(TrU 
�
 �
 �)(�U
V;U
V ) = (�U;V 
 �V )(�U 
 �V 
 �V )(�U 
 �V;V )(�V;U 
 �V )

= (�V 
 �U 
 �V )(�U;V 
 �V )(�U 
 �V;V )(�V;U 
 �V )

= (�V 
 �U 
 �V )(�V 
 �V;U )(�V;V 
 �U )(�V 
 �U;V );

where in the last step we used Theorem 2.6.5(i). Applying TrV 
�
 � we then get

�U
V = (�U 
 �V )�V;U (�V 
 �U )�U;V = (�U 
 �V )�V;U�U;V :

Step 3. We have ��1
U; �U

RU = (�U 
 �) �RU and ��1
U = (� 
 TrU )(��1

U;U ), where (RU ; �RU ) is a
standard solution of the conjugate equations for U .

By the Frobenius reciprocity, the map

End(U)! Mor(1; U 
 �U); T 7! (T 
 �) �RU ;

is a linear isomorphism. Let T 2 End(U) be such that ��1
U; �U

RU = (T 
 �) �RU . Then

T = (�U 
 R�U )(��1
U; �U

 �U )(RU 
 �U )

= (�U 
 R�U )��1
U; �U
U

(� �U 
 �U;U )(RU 
 �U )

= (R�U 
 �U )(� �U 
 �U;U )(RU 
 �U ) = �U :

Now for every object U put ~�U = (� 
 Tr)(��1
U;U ). Then just as for � one shows that

~�U is natural in U and �U; �U
�RU = (�
 ~�U )RU . It follows that

RU = �U; �U (�U 
 �) �RU = (�
 �U )�U; �U
�RU = (�
 �U ~�U )RU ;

and therefore ��1
U = ~�U .

Step 4. We have � �U = (�U )_ and dim�
q U = di(U).

Since �U; �U
�RU = (�
 ��1

U )RU by Step 3, Lemma 2.6.8 implies that

TrU (T��1
U ) = Tr �U (T_��1

�U
)

for all T 2 End(U). On the other hand, it is immediate by definition that TrU (S) =

Tr �U (S_) for all S 2 End(U). It follows Tr �U (T_(��1
U )_) = Tr �U (T_��1

�U
) for all T , whence

� �U = �_U .
Since �U; �U (�U 
 �) �RU = RU , we have

dim�
q U = R�U�U; �U (�U 
 �) �RU = kRUk

2 = di(U):
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Step 5. We have �U = (�
 TrU )(�U;U ) and ��1
U = (TrU 
�)(��1

U;U ).

Put �0U = (�
TrU )(�U;U ). Thus �0 is the inverse of the twist defined by the braiding
��1 . From Step 3 we know that

(�
 �0U )RU = ��1
�U;U

�RU = (� �U 
 �)RU :

Since � = �_ , it follows that �0 = �. Replacing � by ��1 we also get

(�
 TrU )(��1
U;U ) = (TrU 
�)(��1

U;U ):

End of proof. It remains to show that if � is self-adjoint, then � is self-adjoint, and if �
is unitary, then � is unitary. The first statement is immediate, since (TrU 
�)(S)� =

(TrU 
�)(S�). Assume now that � is unitary. Then

��1
U = (TrU 
�)(��1

U;U ) = (TrU 
�)(�U;U )� = ��U :

Thus �U is unitary.

Let us see what the above result means for a braided category RepG, with braiding
defined by an R-matrixR . A collection of natural automorphisms �U of U defines an
invertible element � in the center of U (G) such that �U = �U (��1). Then the condi-
tions imposed on � in order for it to define a twist are

�̂(��1) = (��1 
 ��1)R21R and Ŝ(�) = �;

where the second condition follows from Example 2.2.23. A central element � with
these properties is called a ribbon element. We therefore have a one-to-one correspon-
dence between twists on (RepG;�R ) and ribbon elements.

By Theorem 2.6.9 there is a canonical ribbon element � 2 U (G), given by

�U (�) = (�
 TrU )(��1
U;U );

where TrU is the categorical trace on End(U), not the canonical trace on B(HU ). In
order to compute this element � it will be convenient to use the following convention
similar to Sweedler’s sumless notation discussed after the formulation of Lemma 2.3.4.
We will work with elements ! 2 U (G � G) as if they were finite sums of elementary
tensors. Furthermore, we will omit sums, therefore writing simply ! = !1 
 !2 . Re-
call from Example 2.2.3 that the following defines a standard solution of the conjugate
equations for U :

RU1 =
X
i

�ei 
 ��1=2ei; �RU1 =
X
i
�1=2ei 
 �ei;
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where we have used module notation and have omitted �U . We have �R�U (� 
 ��) =

(�1=2�; �). Hence for any � 2 HU we get

�� = (�
 �R�U )(R �1�
 �)(�
 �RU )�

=
X
i

(�
 �R�U )((R �1)1�
1=2ei 
 (R �1)2�
 �ei)

=
X
i

(�1=2(R �1)2�; ei)(R �1)1�
1=2ei

= (R �1)1�(R
�1)2�;

so � = (R �1)1�(R
�1)2 = (R �1)1Ŝ

2((R �1)2)�. Since (�
 Ŝ)(R �1) =R by The-
orem 2.6.6(iii), we finally get

� =R1Ŝ(R2)�:

Since Ŝ(�) = �, the element � is central and (Ŝ 
 Ŝ)(R ) =R , we can also write

� = Ŝ(�)Ŝ2(R2)Ŝ(R1) = ��1Ŝ(R2)R1 = Ŝ(R2)R1�
�1:

The element u = Ŝ(R2)R1 = m(Ŝ 
 �)(R21) is often called the Drinfeld element.
Note that since ��1 is the twist corresponding to the braiding (�R )�1 = �R �1

21 , we
have

(2.6.5) ��1 = (R �1)2Ŝ((R �1)1)� = Ŝ((R �1)1)(R �1)2�
�1:

Theorem 2.6.9 can now be reformulated as follows.

Theorem 2.6.10. — AssumeR is an R-matrix for a compact quantum group G, and put u =

m(Ŝ 
 �)(R21) 2 U (G). Then � = u��1 is a ribbon element, and dim�
q = dimq . If in

addition R � =R21 , then � = �� , and if R is unitary, then � is unitary.

Example 2.6.11. — Assume � is a discrete abelian group, G = �̂. As we discussed in
Example 2.6.3, an R-matrix for G is a bi-quasi-characterR : ���! C� . Then �(
) =

R (
; 
)�1 for 
 2 �.

Example 2.6.12. — Let Gq be the q -deformation of a simply connected semisimple
compact Lie group, and R = Rq be the R-matrix defined in Example 2.6.4. Let us
compute the ribbon element defined in the previous theorem. In this case by Propo-
sition 2.4.10 the Woronowicz character f1 equals K�2� . Thus � = Ŝq(R2)R1K2� =

R1Ŝq(R2)K�2� . In order to compute how � acts on a simple highest weight mod-
ule V� , it suffice to check how it acts on the highest weight vector �� . We have
K�2��� = q�(�;2�)�� . By virtue of Equation (2.6.2) for Rq the action of R1Ŝq(R2)

on �� is the same as if Rq were equal to q
P

i;j(B
�1)ijHi
Hj . Since the elements Hi

mutually commute and Ŝq(Hi) = �Hi , we thus get

R1Ŝq(R2)�� = q�
P

i;j(B
�1)ijHiHj ��:
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We have X
i;j

(B�1)ijHiHj�� =
X
i;j

(B�1)ij(�; �
_
i )(�; �_j )�� = (�; �)��:

Therefore, putting everything together, we get

��(�) = ��(R1Ŝq(R2)K�2�) = q�(�;�+2�)1:

Denote by Cq 2 U (Gq) the central element that acts on every simple highest weight
module V� as the scalar (�; � + 2�). Recall that in the classical case this is exactly how
the Casimir operator acts. We have thus proved that � = q�Cq , and therefore

(2.6.6) R �
q Rq = q�̂q(Cq)(q�Cq 
 q�Cq):

The ribbon element defined in Theorem 2.6.10 is in general not the only one possi-
ble. Indeed, if z 2 U (G) is a central group-like element such that Ŝ(z) = z , then zu��1

again defines a twist on (RepG;�R ), and this way we get all possible ribbon elements.
Note that if z is group-like, then Ŝ(z) = z�1 , so the condition Ŝ(z) = z is equivalent
to z2 = 1. As a consequence, for any choice of a twist on RepG we have

dim�
q U = �dimq U

for any irreducible representation U . We also conclude that the ribbon element � de-
fined by Theorem 2.6.10 is the unique ribbon element such that the quantum dimen-
sion dim�

q is positive-valued.
It is curious that zu is itself the Drinfeld element for a modified R-matrix. Namely,

consider the element

Rz = (1 + 1
 z + z 
 1� z 
 z)=2:

It is easy to check that upon identifying f1; zg with Z=2Z this is the unique nontrivial
R-matrix for Z=2Z such that R �

z = (Rz)21 . Then ~R = RzR is again an R-matrix
for G, and if R � = R21 , then we still have ~R � = ~R21 . The corresponding element
~u = Ŝ( ~R2) ~R1 equals zu.

If R � = R21 , then in addition to � = u��1 another natural choice for a ribbon
element is j�j. The fact that j�j is indeed a ribbon element follows by applying the polar
decomposition to the identity

R �R = (�
 �)�̂(�)�1:

An advantage of j�j is that it is the unique element defining a positive twist on
(RepG;�R ). For the q -deformation Gq of a compact Lie group G the element
� = u��1 happens to be positive, but clearly this is not true in general.

References. — [18], [48], [59], [100].
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2.7. AMENABILITY

As we discussed in Section 1.7, any compact quantum group has a reduced form
(Cr(G);�r) and a universal form (Cu(G);�u). In this section we will find necessary and
sufficient conditions for these two forms to coincide. If G is the dual of a discrete group
�, then Cr(G) = C�r (�) and Cu(G) = C�(�). In this case it is well-known that C�(�) =

C�r (�) if and only if � is amenable. We will extend this result to quantum groups by de-
veloping a notion of amenability for discrete quantum groups. Remarkably, amenabil-
ity can be detected simply by looking at fusion rules for G, that is, at how the tensor
product of two representations decomposes into irreducible representations. We will
therefore start with more general categorical considerations.

Throughout the whole section we will assume that C is a strict C� -tensor category
with conjugates.

Definition 2.7.1. — A dimension function on C is a map d that assigns a nonnegative
number d(U) to every object U in C such that d(U) > 0 if U is nonzero, d(U) = d(V )

if U �= V ,

d(U � V ) = d(U) + d(V ); d(U 
 V ) = d(U)d(V ); and d( �U) = d(U):

Note that since 1 = 1 
 1 and 1 is a subobject of U 
 �U for every nonzero U , we
automatically have d(1) = 1 and d(U) � 1.

Clearly, the intrinsic dimension di is an example of a dimension function.

The notion of a dimension function depends on a much rougher structure than
C� -tensor categories.

Definition 2.7.2. — The fusion ring of C , which we denote by K(C ), is the universal
ring generated by elements [U], U 2 ObC , such that [U] = [V ] if U �= V , [U] +

[V ] = [U � V ] and [U][V ] = [U 
 V ].

Fix representatives Uj , j 2 I , of isomorphism classes of simple objects. Denote by e 2
I the point corresponding to 1. Then we can identify K(C ) with �j2IZj , with multi-
plication given by

ij =
X
k

mk
ijk; if Ui 
 Uj �=

M
k

mk
ijUk:

Define an involution j 7! �j on I such that U�j
�= �Uj . Then we can say that a dimension

function is a homomorphism d : K(C )! R such that

d(j) > 0 and d(�j) = d(j) for all j 2 I:

For every j 2 I denote by �j the operator of multiplication by j on the left in the
algebra C 
Z K(C ) = �k2ICk . Our goal is to show that �j extends to a bounded
operator on `2(I). The proof is based on the following lemma.
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Lemma 2.7.3. — Let � = (
ik)i;k2I be a matrix with nonnegative real coefficients. Assume
there exists a vector u = (ui)i2I such that ui > 0 for all i 2 I , the vector v = �u is well-defined
and �tv � u coordinate-wise. Then � defines a contraction on `2(I).

Proof. — Note that if vi = 0 for some i, then 
ik = 0 for all k . Thus replacing vi = 0

by any strictly positive number for every such i we get a vector v such that vi > 0 for
all i, �u � v and �tv � u. Then for vectors � = (�i)i and � = (�i)i in `2(I), by the
Cauchy-Schwarz inequality we get

j(��; �)j =

þþþþþXi;k 
ik�k��i
þþþþþ =

þþþþþXi;k
�

(
ikviu
�1
k )1=2�k

��
(
ikukv

�1
i )1=2��i

�þþþþþ
�

 X
i;k


ikviu
�1
k j�kj

2

!1=2 X
i;k


ikukv
�1
i j�ij

2

!1=2

� k�kk�k;

so that k�k � 1.

Proposition 2.7.4. — The operator �j extends to a bounded linear operator on `2(I). Further-
more, for every dimension function d on C we have k�jk � d(j).

Proof. — We apply the previous lemma to the matrix � = (mi
jk=d(j))i;k defining the

operator �j=d(j), and ui = vi = d(i). Then �tv = u by definition of a dimension
function. Since 
ki = mk

ji=d(j) = mi
�jk
=d(j) by the Frobenius reciprocity, we also have

�u = v .

Fix now a dimension function d on C . For a probability measure � on I define a
contraction �� on `2(I) by

�� =
X
j2I

�(j)

d(j)
�j :

We will write �j instead of ��j . If � and � are two probability measures, then ���� =

���� , where

(� � �)(k) =
X
i;j
mk
ij

d(k)

d(i)d(j)
�(i)�(j):

We will write �n for the n-th convolution power ��� � ��� of �. For a measure � denote
by �� the measure defined by ��(i) = �(�i). Then ��� = ��� . A probability measure � on I

is called symmetric if �� = �, and it is called nondegenerate if [n�1 supp�n = I .

Lemma 2.7.5. — For a probability measure � on I consider the following conditions:

(i) 1 2 Sp �� ;

(ii) k��k = 1;

(iii)(�� � �)n(e)1=n ! 1 as n! +1.
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Then (i)) (ii), (iii). If � is symmetric, then all three conditions are equivalent, and if they
are satisfied, there exists a sequence f�ngn of unit vectors in `2(I) such that k�j�n � �nk ! 0

as n ! +1 for all j 2 [n�1 supp�n ; in particular, 1 2 Sp �� for any probability measure �
such that supp � is contained in [n�1 supp�n .

Proof. — It is clear that (i))(ii), and since (�� � �)n(e) = ((�����)n�e; �e), that
(iii))(ii).

In order to show that (ii))(iii), consider the unital C� -algebra A generated
by ����� . Similarly to the proof of Proposition 2.7.4, by Lemma 2.7.3 the operators of
multiplication by j 2 I on the right on K(C ) extend to bounded operators on `2(I).
It follows that the vector �e is cyclic for the commutant A0 of A, hence (� �e; �e) is a
faithful state on A. From this we conclude that k��k2 is the least upper bound of the
support of the measure � on Sp ����� defined by the state (� �e; �e). Since

((�����)n�e; �e) =

Z
tnd�(t) for all n � 0;

it is easy to see that this upper bound is equal to

lim
n!+1

((�����)n�e; �e)
1=n = lim

n!+1
(�� � �)n(e)1=n:

Hence (ii))(iii).

Next assume that � is symmetric and condition (ii) is satisfied. Since �� is self-
adjoint and k��k = 1, there exists a sequence of unit vectors �n 2 `2(I) such that
j(���n; �n)j ! 1. Consider the unit vectors �n = j�nj. Since the matrix �� has non-
negative coefficients, we have (���n; �n) � j(���n; �n)j. Hence (���n; �n) ! 1, and
therefore 1 2 Sp �� .

Since �� is a convex combination of the operators �j , we also see that

(�j�n; �n)! 1

for every j 2 supp�. Since �j is a contraction, this implies that k�j�n� �nk ! 0. Since
k�k��n � �nk ! 0 for all k � 1, we similarly conclude that k�j�n � �nk ! 0 for every
j 2 supp�k .

The previous lemma allows us to introduce the following notion.

Definition 2.7.6. — The pair (K(C ); d) is called amenable if the following equivalent
conditions are satisfied:

(i) 1 2 Sp �� for every probability measure �;

(ii) k��k = 1 for every probability measure �;

(iii)(�� � �)n(e)1=n ! 1 as n! +1 for every probability measure �;
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(iv)there exists a net f��g� of unit vectors in `2(I) such that

k�j�� � ��k �!
�

0 for all j:

The category C is called amenable if (K(C ); di) is amenable, where di is the intrin-
sic dimension function.

Note that Lemma 2.7.5 implies that it suffices to check any of conditions (i)-(iii) in
the above definition for a net f��g� of symmetric probability measures such that the
sets [n�1 supp�n� increase with � and their union is I . In particular, if I is countable,
it suffices to consider one nondegenerate symmetric probability measure.

Proposition 2.7.7. — Let d be a dimension function on a C� -tensor category C such that
(K(C ); d) is amenable. Then d(j) = k�jk = k(mi

jk)i;kk for every j 2 I , and for any other
dimension function d0 on C we have d0 � d.

Proof. — For (K(C ); d) to be amenable, at the very least we need the condition k�jk =

1 to be satisfied for every j 2 I , but it means exactly that d(j) = k�jk. The second
statement follows from the inequality k�jk � d0(j), which by Proposition 2.7.4 holds
for any dimension function d0 .

Corollary 2.7.8. — If C is finite, meaning that the set I of isomorphism classes of simple objects
is finite, then C is amenable and the intrinsic dimension is the only dimension function on C .

Proof. — Any dimension function d on C is amenable, since the vector (d(j))j2I is
an eigenvector of �� with eigenvalue 1 for every probability measure �. Hence d(j) =

k�jk.

Corollary 2.7.9. — Let C and C 0 be C� -tensor categories with conjugates and F : C ! C 0

be a unitary tensor functor. Assume C is amenable. Then di(F (U)) = di(U) for every object U
in C .

Proof. — Consider the dimension function d = diF on C . By Corollary 2.2.20 we have
d � di . On the other hand, di is the smallest dimension function on C by amenability.
Hence d = di .

We now turn to the promised application of amenability to quantum groups. For
a compact quantum group G, denote by h the Haar state on Cu(G). By definition the
image of the GNS-representation �h of Cu(G) is Cr(G).

For every finite dimensional unitary representation U of G put

�(U) = (Tr
�)(U) 2 C[G]:

This element is called the character of U . Note that the linear span of characters is a
unital �-subalgebra of C[G]: �(U)� = �( �U) and �(U)�(V ) = �(U � V ).
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Theorem 2.7.10. — For a compact quantum group G the following conditions are equivalent:

(i) the fusion ring of G, that is, of RepG, together with the classical dimension function dim

is amenable;

(ii) for every finite dimensional unitary representation U of G we have dimU 2 Sp�h(�(U));

(iii) the counit " : C[G]! C extends to a bounded linear functional on Cr(G);

(iv) the map �h : Cu(G)! Cr(G) is an isomorphism.

Proof. — (i),(ii) Consider the norm closure A of the linear span of the opera-
tors �h(�(U)) in Cr(G). This is a unital C� -algebra. Put H = A�h � L2(G). Since by
Corollary 1.7.5 the Haar state is faithful on Cr(G), we have dimU 2 Sp�h(�(U)) if
and only if dimU 2 Sp(�h(�(U))jH).

Choose representatives Uj , j 2 I , of isomorphism classes of irreducible uni-
tary representations of G. By the orthogonality relations the map T : `2(I) ! H ,
T�j = �(Uj)�h , is a unitary isomorphism. Furthermore, if U �= �jnjUj and � =

(dimU)�1P
j nj(dimUj)�j , then one can easily check that �(U)T = (dimU)T�� .

Therefore 1 2 Sp �� if and only if dimU 2 Sp(�h(�(U))jH). Note also that if U is
self-conjugate, then � is symmetric. Since the supports of such measures � form a
directed set with union equal to I , we conclude that (i) and (ii) are equivalent.

(ii),(iii) Assume (iii) holds. Then "(�(U)) = dimU as (� 
 ")(U) = 1, and since
" is a character of the C� -algebra Cr(G), it follows that dimU 2 Sp�h(�(U)).

Assume (ii) holds. Let U be a self-conjugate unitary representation. Since dimU 2

Sp�h(�(U)) and �(U) is self-adjoint, there exists a state ! on Cr(G) such that
!(�(U)) = dimU . Since the inequality k�(V )k � dim V holds for any represen-
tation V , we conclude that !(�(V )) = dim V for any subrepresentation V of U .
Choosing an increasing net of self-conjugate unitary representations and taking a
weak� limit point of the corresponding states !, we get a state � on Cr(G) such that
�(�(V )) = dim V for any V .

Next, for every finite dimensional unitary representation V , the operator X = (�


�)(V ) 2 B(HV ) has the properties kXk � 1 and TrX = dimHV , which is possible
only when X = 1. Hence � is an extension of the counit " on C[G].

(iii),(iv) The implication (iv))(iii) is obvious, as the counit is well-defined
on Cu(G).

In order to prove that (iii))(iv), observe that the comultiplication �: C[G] !

C[G]
C[G] extends to a �-homomorphism � : Cr(G)! Cr(G)
Cu(G). Indeed, con-
sider the right regular representation W 2 M(K(L2(G))
Cu(G)). Then we can define
�(a) = W (a
 1)W � for a 2 Cr(G), see Theorem 1.5.3(ii).
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Then # = (" 
 �)� : Cr(G) ! Cu(G) is a unital �-homomorphism such that
#(�h(a)) = a for a 2 C[G]. Hence # is the inverse of �h : Cu(G)! Cr(G).

Note that by the proof of the theorem and by Lemma 2.7.5 condition (ii) can
be replaced by several other equivalent conditions. For example, if there exists a
self-conjugate finite dimensional unitary representation U such that the matrix
coefficients of U generate C[G], then we may require dimU 2 Sp�h(�(U)) or
k�h(�(U))k = dimU . We refer the reader to [11], [40] and [78] for some other
equivalent conditions.

Definition 2.7.11. — A compact quantum group G is called coamenable if the equiva-
lent conditions in Theorem 2.7.10 are satisfied.

We want to stress that coamenability of G is in general not the same as amenability
of the category RepG of finite dimensional representations of G, since coamenability
refers to the classical dimension and not the quantum dimension. The two notions of
dimension coincide if and only if G is of Kac type.

Proposition 2.7.12. — Any compact group G is coamenable.

Proof. — Clearly, Cr(G) = C(G) and the counit " : C(G) ! C is well-defined: it is the
evaluation at the unit element of G.

Therefore for any compact group G the category RepG is amenable. By virtue of
Corollary 2.7.9 we then get the following result.

Corollary 2.7.13. — If G is a compact group and F : RepG! Hilbf is a unitary fiber func-
tor, then dim F (U) = dimU for any finite dimensional unitary representation U .

Note that as follows from Corollary 2.5.4, the above corollary is not true for quantum
groups, specifically, for free orthogonal quantum groups.

Let us now consider some examples.

Theorem 2.7.14. — The q -deformation Gq , q > 0, of any simply connected semisimple compact
Lie group G is coamenable.

Proof. — For q = 1 the result is true by Proposition 2.7.12. On the other hand, by
Theorem 2.4.7 the fusion ring of Gq together with the classical dimension function
does not depend on q .

Therefore C[Gq] has only one completion to a C� -algebra of continuous functions
on a compact quantum group, a result that we promised in Section 2.4.

Theorem 2.7.15. — The free orthogonal quantum group Ao(F ) defined by a matrix F 2

GLn(C) (such that F �F = �1) is coamenable for n = 2 and non-coamenable for n � 3.
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Proof. — By Theorem 2.5.11 the compact quantum group Ao(F ) is monoidally equiva-
lent to SUq(2) for some q 2 [�1; 1]nf0g, and under this equivalence the fundamental
representation of Ao(F ) corresponds to the fundamental representation of SUq(2). In
other words, the fusion ring of Ao(F ) is that of SU(2), and the dimension of the fun-
damental representation is n. If n = 2, we therefore get the classical dimension func-
tion for SU(2), hence Ao(F ) is coamenable (and, as follows from Theorem 2.5.11 and
Remark 2.5.5, isomorphic to SUq(2) for some q). If n � 3, we get a strictly larger di-
mension function, hence Ao(F ) is not coamenable.

It can also be shown that the free unitary groups Au(F ) are always non-coa-
menable [4], while the free permutation groups As(n) are coamenable for n � 4

and non-coamenable for n � 5 [7].

References. — [4], [6], [5], [7], [10], [11], [34], [40], [56], [59], [69], [78].
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CHAPTER 3

COHOMOLOGY OF QUANTUM GROUPS

In this chapter we develop a low dimensional cohomology theory for discrete quan-
tum groups. The principal result is a computation of some of these groups for the q -de-
formations of semisimple Lie groups. The result itself, as well as the technique used to
prove it, will play a crucial role in the next chapter.

3.1. DUAL COCYCLES

Assume � is a discrete group. Then the cohomology groups Hn(�; C�) of � with
coefficients in C� can be computed using the cobar complex

1 �! C0 @
�! C1 @

�! C2 @
�! : : : ;

where Cn is the group of functions �n ! C� with pointwise multiplication and the
differential @ : Cn ! Cn+1 is defined by

@f =
n+1Y
k=0

(@knf)(�1)k ;

where

(@0
nf)(
1; : : : ; 
n+1) = f(
2; : : : ; 
n+1);

(@n+1
n f)(
1; : : : ; 
n+1) = f(
1; : : : ; 
n);

(@knf)(
1; : : : ; 
n+1) = f(
1; : : : ; 
k�1; 
k
k+1; 
k+2; : : : ; 
n) for 1 � k � n:

Let us now try to write a similar complex for discrete quantum groups. Assume that
G is a compact quantum group. For n � 0 and an invertible element ! 2 U (Gn) (we
let U (G0) = C) define

@0
n! = 1
 !; @n+1

n ! = !
 1;

@kn! = (�
 � � � 
 �
 �̂
 �
 � � � 
 �)(!) for 1 � k � n;
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with �̂ in the k -th position. Then put

@! = @0
n(!)@2

n(!) : : : @1
n(!�1)@3

n(!�1) : : : :

For general compact quantum groups this way we no longer get a complex. Neverthe-
less for small n we still get something meaningful. Before we turn to this, let us intro-
duce more notation.

For invertible elements � 2 U (Gn+1) and ! 2 U (Gn) put

�! = (@0
n(!)@2

n(!) : : : )�(@1
n(!�1)@3

n(!�1) : : : );

so that 1! = @!.

Definition 3.1.1. — A dual C� -valued (resp. T-valued) n-cocycle on G, or a C� -valued
(resp. T-valued) n-cocycle on Ĝ, is an invertible (resp. unitary) element � of U (Gn)

such that @� = 1.
A cocycle � is called normalized, or counital, if applying "̂ to any of the factors of �

we get 1.
Given two invertible (resp. unitary) elements �0 and � of U (Gn) we say that �0 is

cohomologous to � if there exists an invertible (resp. unitary) element ! 2 U (Gn�1)

such that �0 = �! . Elements of the form @! are called coboundaries.

We stress again that for general quantum groups these notions do not have proper-
ties one would like to have: coboundaries are not necessarily cocycles, the relation of
being cohomologous in not symmetric, and so on.

Let us now introduce a class of cocycles that we will be particularly interested in.

Definition 3.1.2. — An element of U (Gn) is said to be invariant if it commutes with
the elements in the image of �̂(n�1) : U (G)! U (Gn), where �̂(n�1) is defined induc-
tively as follows: �̂(1) = �̂, and �̂(k)(!) is obtained by applying �̂ to any of the factors
of �̂(k�1)(!) (this gives the same element by coassociativity of �̂).

Given two invertible (resp. unitary) invariant elements �0 and � of U (Gn) we say
that �0 is cohomologous to � if there exists an invertible (resp. unitary) invariant ele-
ment ! 2 U (Gn�1) such that �0 = �! .

Let us consider what the above definitions mean for n = 1; 2; 3.

1-cocycles

A 1-cocycle on Ĝ is an invertible element u of U (G) such that

�̂(u) = u
 u:

Such elements are also called group-like. They form a group, which we denote
by H1(Ĝ; C�). Note that instead of invertibility it suffices to assume that u 6= 0, since
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the identity �̂(u) = u 
 u implies that u = "̂(u)u and "(u)1 = uŜ(u). Unitary group-
like elements form a group H1(Ĝ; T). This group is also called the intrinsic group
of G, or more precisely, the intrinsic group of (U (G); �̂).

Invariant elements of U (G) are exactly the central elements. Considering central
group-like elements we get two more groups, which we denote by H1

G(Ĝ; C�) and
H1
G(Ĝ; T).

These four groups have categorical interpretations. Namely, recall that we can iden-
tify U (G) with the algebra of endomorphisms of the forgetful functor RepG! Hilbf .
Then H1(Ĝ; C�) is the group of monoidal automorphisms of the canonical fiber func-
tor RepG ! Hilbf , while H1(Ĝ; T) is the group of unitary monoidal automorphisms
of this tensor functor. Similarly, the group H1

G(Ĝ; C�) (resp. H1
G(Ĝ; T)) is the group of

all (resp. all unitary) monoidal automorphisms of the identity tensor functor on RepG.

Another way of looking at group-like elements is that they are nonzero homomor-
phisms C[G]! C. If u is group-like, then Ŝ(u) = u�1 , and therefore

u(a�) = Ŝ(u)�(a) = (u�1)�(a) for all a 2 C[G]:

Hence u is unitary if and only if u : C[G] ! C is a �-homomorphism. It follows that
we can also identify H1(Ĝ; T) with the characters of the C� -algebra Cu(G).

In the next section we will find all group-like elements in many cases.

2-cocycles

A 2-cocycle on Ĝ is an invertible element E 2 U (G� G) such that

(E 
 1)(�̂
 �)(E ) = (1
 E )(�
 �̂)(E ):

Invertible elements E ;F 2 U (G� G) are cohomologous if there exists an invertible
element u 2 U (G) such that

E =Fu = (u
 u)F �̂(u)�1:

Then @E = (u
u
u)@F (u�1
u�1
u�1), which shows that if F is a cocycle, then
so is E . In particular, @u = (u
 u)�̂(u)�1 is a 2-cocycle.

Example 3.1.3. — Any R-matrix for G is a dual 2-cocycle on G: the cocycle identity is
exactly the Yang-Baxter equation.

For 2-cocycles the property of being cohomologous is an equivalence relation.
Denote by H2(Ĝ; C�) the set of equivalence classes of 2-cocycles. The product of
two 2-cocycles is not necessarily a cocycle, so H2(Ĝ; C�) is just a set. Restricting to
unitary and/or invariant elements we get three more sets H2(Ĝ; T), H2

G(Ĝ; C�) and
H2
G(Ĝ; T). Note that invariant 2-cocycles do form a group under multiplication, and

coboundaries of invertible central elements in U (G) form a central subgroup of this
group. It follows that H2

G(Ĝ; C�) and H2
G(Ĝ; T) are groups.
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Applying �
 "̂
 � to (E 
 1)(�̂
 �)(E ) = (1
 E )(�
 �̂)(E ) we get

(�
 "̂)(E )
 1 = 1
 ("̂
 �)(E ):

It follows that
(�
 "̂)(E ) = ("̂
 �)(E ) = ("̂
 "̂)(E )1:

Therefore any 2-cocycle is cohomologous to a counital cocycle. Counital dual 2-cocy-
cles are often called twists, or Drinfeld twists, but we will mean by a Drinfeld twist a
different object.

The set H2(Ĝ; C�) again allows for a categorical interpretation. Consider the for-
getful functor F : Rep(G) ! Hilbf . Any invertible element E 2 U (G � G) defines a
natural isomorphism

F2 : F (U)
 F (V )
E �1

���! F (U 
 V ):

Then E is a cocycle if and only if (F; F2) is a tensor functor, that is, the diagram

F (U)
 F (V )
 F (W )
E �1
1 //

1
E �1

��

F (U 
 V )
 F (W )

(�̂
�)(E �1)
��

F (U)
 F (V 
W )
(�
�̂)(E �1)

// F (U 
 V 
W )

commutes. Furthermore, two 2-cocycles are cohomologous if and only if their corre-
sponding tensor functors RepG! Hilbf are naturally monoidally isomorphic.

Note now that any functor E : RepG ! Hilbf such that dimE(U) = dimU for all
U is naturally isomorphic to the forgetful functor. If E is in addition a tensor functor,
then the tensor structure on E defines a tensor structure on the forgetful functor F ,
hence a 2-cocycle. It is easy to check that the cohomology class of this cocycle does not
depend on the choice of an isomorphism E �= F .

To summarize, the set H2(Ĝ; C�) can be identified with the set of natural monoidal
isomorphism classes of dimension-preserving fiber functors E : RepG ! Hilbf . Sim-
ilarly, the set H2(Ĝ; T) can be identified with the set of natural unitary monoidal iso-
morphism classes of dimension-preserving unitary fiber functors. Recall in passing that
by Corollary 2.7.13, if G is a genuine group, then any unitary fiber functor on RepG is
dimension-preserving.

Another important interpretation of H2(Ĝ; T), which we are not going to discuss
(but see Example 3.1.8), is that this is the set of isomorphism classes of full multiplicity
ergodic actions of G on von Neumann algebras [14, 57, 92].

Example 3.1.4. — Consider the quantum group SUq(2), q 2 [�1; 1] n f0g. As follows
from Corollary 2.5.4 and Remark 2.5.5, the canonical fiber functor

Rep SUq(2)! Hilbf
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is the unique dimension-preserving unitary fiber functor up to a natural unitary
monoidal isomorphism. Therefore the set H2( [SUq(2); T) consists of one element.
The same results describe the dual second cohomology of free orthogonal quantum
groups with coefficients in T, and we see that typically this cohomology is nontrivial.

It is natural to ask whether two cohomologous 2-cocycles that happen to be unitary,
are in fact cohomologous as unitary cocycles, that is, if the canonical map H2(Ĝ; T)!

H2(Ĝ; C�) is injective. The following simple lemma settles this question in the affirma-
tive.

Lemma 3.1.5. — Let E ;F 2 U (G � G) be two unitary elements such that E = Fu for
an invertible element u 2 U (G). Then also E = Fv , where v is the unitary part in the polar
decomposition u = vjuj of u.

Proof. — It is sufficient to show that (juj 
 juj)F = F �̂(juj), or equivalently, that
(u�u
 u�u)F =F �̂(u�u). Since

1 = E �E = �̂(u�1)�F �(u� 
 u�)(u
 u)F �̂(u�1);

we see that this is indeed the case.

A 2-cocycle E is invariant if it defines a natural morphism U 
 V
E �1

���! U 
 V in
the tensor category RepG. In this case the identity functor RepG ! RepG becomes
a tensor functor with tensor structure given by the action of E �1 . It follows that the
group H2

G(Ĝ; C�) (resp. H2
G(Ĝ; T)) can be identified with the group of all (resp. all uni-

tary) monoidal autoequivalences of RepG that are naturally isomorphic to the identity
functor, considered up to natural (unitary) monoidal isomorphisms. Note that a func-
tor RepG! RepG is naturally isomorphic to the identity functor if and only if it maps
every irreducible representation into an equivalent one. Therefore we can say that the
groups H2

G(Ĝ; �) classify those monoidal autoequivalences of RepG that define the triv-
ial automorphism of the fusion ring of G.

Example 3.1.6. — Consider again the quantum group SUq(2), q 2 [�1; 1] n f0g. As
was shown in the proof of Theorem 2.5.11(ii), any unitary monoidal autoequivalence
of SUq(2) is naturally unitarily monoidally isomorphic to the identity functor. In par-

ticular, the group H2
SUq(2)(

[SUq(2); T) is trivial.

One of the main goals of this chapter is to compute the groups H2
G(Ĝ; C�) and

H2
G(Ĝ; T) for the Drinfeld-Jimbo deformations of arbitrary simply connected semisim-

ple compact Lie groups. On the other hand, the computation of noninvariant second
dual cohomology seems to be out of reach even for classical compact groups. We refer
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102 CHAPTER 3. COHOMOLOGY OF QUANTUM GROUPS

the reader to [69] for an overview of what is known in that case, but in order to get a
taste of the problem let us briefly explain two known constructions of dual 2-cocycles.

Example 3.1.7. — Assume G is a compact quantum group and H is a closed quantum
subgroup, that is, H is a compact quantum group and we have a surjective unital �-ho-
momorphism � : C(G) ! C(H) respecting the comultiplications. Then �(C[G]) =

C[H], and by duality we get embeddings U (Hn) ,! U (Gn). Given a dual cocycle on H

and using these embeddings we therefore get a dual cocycle on G. Such cocycles are
said to be induced from H . In particular, if H = �̂ for a discrete group �, then any
2-cocycle on � defines a dual 2-cocycle on G.

Example 3.1.8. — Assume G is a finite group and c is a C� -valued 2-cocycle on G. As-
sume c is nondegenerate, that is, for every element g 2 G n feg the character h 7!

c(g; h)c(h; g)�1 of the centralizer C(g) of g is nontrivial. Consider the twisted group
algebra A generated by elements ug , g 2 G, satisfying the relations uguh = c(g; h)ugh .
The group G acts on A by the inner automorphisms Ad ug , so we get a representation
of G on the vector space A. Using the nondegeneracy assumption it is easy to compute
the character of this representation and conclude that the representation is equivalent
to the regular one. Therefore we can identify the G-spaces A and C(G), with G act-
ing on C(G) by right translations. The algebra structure on A defines a new product �
on C(G). Let ~c(g; h) 2 C be such that

(a � b)(e) =
X

g;h2G

~c(g; h)a(g)b(h) for all a; b 2 C(G):

Since the action of G respects the new product, we then get

(3.1.1) (a � b)(s) =
X

g;h2G

~c(g; h)a(gs)b(hs) for all s 2 G:

Define now an element E of U (G� G) by

E =
X

g;h2G

~c(g; h)�g 
 �h;

where �g are the standard generators of the group algebra U (G) of G. Identity (3.1.1)
can then be written as

(a � b)(!) = (a
 b)(E �̂(!)) for all ! 2 U (G):

It follows that the associativity of the product � means exactly that E satisfies the cocy-
cle identity

(E 
 1)(�̂
 �)(E ) = (1
 E )(�
 �̂)(E ):

It can furthermore be shown that E is invertible, so it is a dual 2-cocycle on G.
The construction of E depends on the identification of A with C(G), but it is not

difficult to see that the cohomology class of E depends only on the cohomology class
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of c. Therefore we get a map from the subset H2(G; C�)� � H2(G; C�) of classes rep-
resented by nondegenerate 2-cocycles on G into H2(Ĝ; C�).

For finite groups any dual 2-cocycle is obtained by inducing a dual cocycle defined
in the previous example from a subgroup [31, 64, 92]. The situation for general com-
pact groups is much less clear.

3-cocycles

A 3-cocycle on Ĝ is an invertible element � 2 U (G3) such that

(3.1.2) (1
�)(�
 �̂
 �)(�)(�
 1) = (�
 �
 �̂)(�)(�̂
 �
 �)(�):

A 3-cocycle �0 is cohomologous to � if there exists an invertible elementF 2 U (G2)

such that

�0 = �F = (1
F )(�
 �̂)(F )�(�̂
 �)(F �1)(F �1 
 1):

The relation of being cohomologous is not even symmetric. It nevertheless becomes
an equivalence relation if we consider only invariant elements, that is, when �0 , �

and F are invariant. Therefore we can define the cohomological sets H3
G(Ĝ; C�) and

H3
G(Ĝ; T).

Lemma 3.1.9. — Any (unitary) invariant 3-cocycle on Ĝ is cohomologous to a counital (uni-
tary) invariant 3-cocycle.

Proof. — Let � be a (unitary) invariant 3-cocycle. Consider the central (unitary) ele-
ments

u = (�
 "̂
 "̂)(�) and v = ("̂
 "̂
 �)(�)

in U (G), and put F = u 
 v�1 . We claim that �F is counital. Let us check, for
example, that ("̂
 �
 �)(�F ) = 1, that is,

�̂(v�1)("̂
 �
 �)(�)(v 
 1) = 1:

By applying "̂
 "̂
 �
 � to (3.1.2) we see that this is indeed the case.

Definition 3.1.10. — A counital unitary invariant 3-cocycle on Ĝ is called an associator
for G.

The name associator is explained by the fact that any such element � defines new

associativity morphisms (U 
 V ) 
 W
�
�! U 
 (V 
 W ) on RepG. The cocycle con-

dition (3.1.2) corresponds exactly to the pentagon diagram. For G = �̂ this was al-
ready discussed in Example 2.1.2. Furthermore, two associators � and �0 are cohomol-
ogous if and only if the C� -tensor categories (RepG;�) and (RepG;�0) are unitarily
monoidally equivalent via an equivalence that is naturally isomorphic to the identity
functor. Therefore we can say that H3

G(Ĝ; T) classifies possible associativity morphisms
on RepG up to equivalence.
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104 CHAPTER 3. COHOMOLOGY OF QUANTUM GROUPS

The set H3
G(Ĝ; C�) has a similar interpretation, but then we have to go outside

C� -tensor categories and allow for nonunitary associativity morphisms. Note also
that similarly to the proof of Lemma 3.1.5 it is easy to check that the canonical map
H3
G(Ĝ; T)! H3

G(Ĝ; C�) is injective.

Example 3.1.11. — Consider the q -deformation Gq , q > 0, of a simply connected
semisimple compact Lie group G. As we will discuss in detail in the next section, the
center Z(G) of G can be considered as a central subgroup of Gq , so every cocycle

on [Z(G) defines an invariant dual cocycle on Gq . Explicitly, the dual group of Z(G) is
canonically isomorphic to P=Q, where P is the weight lattice and Q is the root lattice,
and an n-cocycle c on P=Q considered as a cocycle on Ĝq acts on V�1


 � � � 
 V�n as
multiplication by c(�1; : : : ; �n).

Assume G = SU(2) and n = 3. In this case P = 1
2Z, Q = Z, P=Q �= Z=2Z. We have

H3(Z=2Z; T) �= Z=2Z, with the cohomology class corresponding to 1 represented by
the counital cocycle c such that c(1; 1; 1) = �1. This cocycle defines new associativity
morphisms on Rep SUq(2). By Theorem 2.5.10, if the category Rep SUq(2) with new
associativity morphisms has conjugates, then it must be unitarily monoidally equivalent
toTL d;� for some d � 2 and � = �1. If a pair (R;�R) solves the conjugate equations
for V1=2 in Rep SUq(2), then (R;R) solves the conjugate equations for V1=2 in the new
nonstrict category. It follows that the new category is indeed a C� -tensor category with
conjugates, and d = kRk2 = [2]q and � = �1. Therefore, assuming that q 2 (0; 1], the
category Rep SUq(2) with associativity morphisms defined by the cocycle c is unitarily
monoidally equivalent to Rep SU�q(2).

In the next chapter we will prove much more: any of the categories Rep SUq(2) can
be obtained by changing the associativity morphisms in Rep SU(2), and the same is
true for the q -deformation of any simply connected semisimple compact Lie group G.

We have therefore introduced cohomological sets/groups H1(Ĝ; �), H2(Ĝ; �),
H1
G(Ĝ; �), H2

G(Ĝ; �) and H3
G(Ĝ; �), with coefficients in T or C� . They all have categorical

interpretations, and H i
G(Ĝ; �) depend only on the C� -tensor category RepG.

References. — [14], [19], [20], [27], [31], [38], [43], [42], [57], [64], [69], [92].

3.2. GROUP-LIKE ELEMENTS

In this section we will compute the groups H1(Ĝ; �) and H1
G(Ĝ; �) in various cases.

We start with genuine compact groups.

Theorem 3.2.1. — For any compact group G we have canonical isomorphisms

H1(Ĝ; T) �= G and H1
G(Ĝ; T) �= Z(G);

COURS SPÉCIALISÉS 20



3.2. GROUP-LIKE ELEMENTS 105

where Z(G) is the center of G.

Proof. — Elements of G define evaluations maps on C[G] that are characters. We have
to show that this way we get all characters of C[G]. There are several ways of proving
this. One possibility is to use coamenability of G established in Proposition 2.7.12. It
implies that any character � of C[G] extends to C(G) = Cu(G), hence � is the evalua-
tion at some element of G. Therefore H1(Ĝ; T) �= G.

This result can also be formulated as follows. The algebra U (G) contains the group
algebra of G, generated by the elements �g such that �U (�g) = Ug for any unitary rep-
resentation U . Then the set of unitary group-like elements in U (G) is exactly f�ggg2G .

Clearly, �g is central in U (G) if and only if g is central in G. Hence H1
G(Ĝ; T) �=

Z(G).

For compact Lie groups we can also describe the set of all group-like elements. In
order to do this, recall that the analytic complexification GC of a compact Lie group
G is a complex analytic group containing G such that any Lie group homomorphism
G ! H into a complex analytic group H extends uniquely to an analytic homomor-
phism GC ! H , see e.g., [17, Chapter 27]. Any compact Lie group has an analytic
complexification, and it is unique up to an isomorphism. Furthermore, the Lie alge-
bra of GC is the complexification of the Lie algebra of G, and GC=(GC)� = G=G� . Since
any finite dimensional representation of G extends to a representation of GC on the
same space, we have an embedding GC ,! U (G). Its image consists of group-like ele-
ments.

Theorem 3.2.2. — For any compact Lie group G we have canonical isomorphisms

H1(Ĝ; C�) �= GC and H1
G(Ĝ; C�) �= Z(GC):

Proof. — Assume a is a group-like element in U (G). Then a�a is group-like as well,
hence jaj is also group-like. It follows that if a = ujaj is the polar decomposition, then
u is group-like. By the previous theorem we know that u 2 G. So we just have to show
that jaj 2 GC . In other words, we may assume that a is positive.

For every z 2 C we have

�̂(az) = �̂(a)z = (a
 a)z = az 
 az :

In particular, the unitary elements ait , t 2 R, are group-like, hence they lie in G �

U (G). It follows that there exists an element X of the Lie algebra of G such that ait =

exp tX for t 2 R. Then az = exp(�izX) 2 GC for all z 2 C, since both az and
exp(�izX) are analytic functions in z that coincide for z 2 iR. In particular, a =

exp(�iX) 2 GC .
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Consider now the q -deformation Gq of a simply connected semisimple compact
Lie group G, q > 0. The irreducible �-representations of C[Gq] for q 6= 1 have
been classified by Soibelman, see [53]. According to this classification the characters
of C[Gq] correspond to points of our fixed maximal torus T � G. Explicitly, we embed
T into U (Gq) by

exp(it1(log q1)H1 + � � �+ itr(log qr)Hr) 7! K it1
1 : : : K itr

r ;

where H1; : : : ; Hr is the standard basis in h. Note that this embedding agrees with our
conventions in Example 2.6.4, where we introduced elements Hj of U (Gq) such that

Kj = q
Hj

j .

Theorem 3.2.3. — For every q > 0, q 6= 1, we have:

(i) H1(Ĝq; T) = T and H1(Ĝq; C�) = TC ; in other words, the group-like elements in U (Gq)

have the form Kz1
1 : : : Kzr

r , with z1; : : : ; zr 2 C;

(ii) H1
Gq

(Ĝq; T) = H1
Gq

(Ĝq; C�) = Z(G) �= dP=Q.

Proof. — (i) As we already explained, the equality H1(Ĝq; T) = T is part of Soibelman’s
classification of irreducible representations of C[Gq]. The equality H1(Ĝq; C�) = TC
is then obtained by the same argument as in the proof of Theorem 3.2.2.

(ii) By considering TC as a subset of U (Gq), from the relations in Uqg we get

exp(H)Ej exp(�H) = e�j(H)Ej for any H 2 h:

It follows that an element exp(H) is central in U (Gq) if and only if e�j(H) = 1 for all j .
Identifying TC with the group of quasi-characters of the weight lattice P (namely, the
image of � 2 P under exp(H) is e�(H)), we conclude that an element of TC lies in the
center of U (Gq) if and only if it vanishes on the root lattice Q. Since P=Q is finite, any
quasi-character of P=Q is a character. Therefore

H1
Gq

(Ĝq; T) = H1
Gq

(Ĝq; C�) �= dP=Q:
Finally, it is well-known that the center Z(G) of G is contained in T and it consists ex-
actly of those characters of P that vanish on Q.

Part (ii) of the above theorem can, in fact, be easily proved without relying on the
classification of irreducible representations of C[Gq]. Since the irreducible represen-
tations of Gq are classified by dominant integral weights, the center of U (Gq) is canon-
ically isomorphic to the algebra of functions on P+ . In particular, the centers of U (Gq)

and U (G) are canonically isomorphic.

Lemma 3.2.4. — There exists a �-isomorphism ' : U (Gq)! U (G) that extends the canonical
identification of the centers and that is the identity map on the maximal torus T . Furthermore,
there exists a unitary F 2 U (G� G) such that ('
 ')�̂q =F �̂'(�)F � .
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Proof. — For every � 2 P+ fix a representation V
q
� of Gq and a representation V� of G

with highest weights �. Then to define ' is the same as to choose a �-isomorphism
'� : B(V

q
� )! B(V�) that maps the projection onto a weight space V

q
� (�) into the pro-

jection onto V�(�) for all � 2 P+ and � 2 P . Since by Theorem 2.4.7 the dimensions
of V q

� and V
q
� (�) do not depend on q , such an isomorphism clearly exists. Next, by the

same theorem, the multiplicity of V q
� in V

q
� 
 V

q
� does not depend on q either. This

means that the multiplicity of the map �̂
�
q;�;� : B(V

q
� ) ! B(V

q
� ) 
 B(V

q
� ) obtained by

applying �̂q to an element of B(V
q
� ) � U (Gq) and projecting the image onto B(V

q
� )


B(V
q
� ), does not depend on q . It follows that the two maps

�̂
�
�;�; ('� 
 '�)�̂

�
q;�;�'

�1
� : B(V�)! B(V�)
 B(V�)

have the same multiplicities, hence they are inner conjugate. This implies the existence
of F .

The existence of (';F ) implies that a central element in U (Gq) is group-like if and
only if it is group-like in U (G). Indeed, if, for example, c is group-like in U (G), then

('
 ')�̂q(c) =F �̂(c)F � = c
 c;

so c is group-like in U (Gq) as well. Hence

H1
Gq

(Ĝq; C�) = H1
G(Ĝ; C�) = Z(GC) = Z(G):

Finally, note that a central element c 2 U (Gq) is simply a collection of num-
bers c(�), � 2 P+ , such that c acts on V

q
� as multiplication by c(�). Then c is group-like

if and only if c(�) = �(�) for a character � of P=Q. In this formulation it is particu-
larly obvious that U (Gq) has no nontrivial positive central group-like elements, as we
claimed in the proof of Proposition 2.4.10.

References. — [17], [29], [53], [70].

3.3. KAZHDAN-LUSZTIG COMONOID

In this section we will introduce a construction that will play a crucial role in the
analysis of invariant dual 2-and 3-cocycles.

Let M be any object in a C� -tensor category C with associativity morphisms � : (U


V ) 
 W ! U 
 (V 
 W ). Assume that � and � are the identity morphisms, so that
1 
 U = U 
 1 = U . Consider the functor F = Hom(M; �) from C into the category
of vector spaces. In general there is no obvious way to define a tensor structure on F .

Definition 3.3.1. — An object M in C is called a comonoid if it comes with two mor-
phisms � : M ! M 
M and " : M ! 1 such that

�(�
 �)� = (�
 �)�; ("
 �)� = (�
 ")� = �:
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Given a comonoid M and letting F = Hom(M; �) we can define natural morphisms

F2 : F (U)
 F (V )! F (U 
 V )

by f 
 g 7! (f 
 g)�. If these morphisms happen to be isomorphisms and the spaces
F (M) are finite dimensional, then (F; F2) becomes a fiber functor, with F0 : C! F (1)

defined by 1 7! ".

Example 3.3.2. — Let G be a finite quantum group, that is, C(G) is finite dimensional.
Then the triple (U (G); �̂; "̂) is a comonoid, called the regular comonoid. The corre-
sponding fiber functor F = Hom(U (G); �) is naturally monoidally isomorphic to the
canonical fiber functor, with the isomorphisms

Hom(U (G); U) ' U; f 7! f(1):

More generally, if E is a counital 2-cocycle on Ĝ, we can define a map

� : U (G)! U (G� G); �(a) = �̂(a)E �1:

Again it is easy to see that (U (G); �; "̂) is a comonoid in RepG. It represents the for-
getful functor, but now with the tensor structure associated to the cocycle E , that is,

F2 = E �1 : U 
 V ! U 
 V:

We now focus on the C� -tensor category Cq(g), q > 0, of finite dimensional ad-
missible unitary Uqg-modules introduced in Section 2.4. The aim of this section is to
construct, rather elaborately, a comonoid M representing the canonical fiber functor.

Our comonoid cannot live inside Cq(g), since Cq(g) has infinitely many nonisomor-
phic simple objects, so we have to enlarge the category Cq(g), namely, to the category
pro-Cq(g) of pro-objects. This means that the objects of the new category are formal
cofiltered limits, or in other words projective systems fVigi of finite dimensional admis-
sible unitary Uqg-modules, and

Hom(fVigi; fWjgj) = lim
 �
j

lim
�!
i

HomUqg(Vi; Wj):

It is convenient, although not fully correct, to think of a pro-object fVigi as a topo-
logical Uqg-module V = lim

 
Vi , with a base of neighborhoods of zero formed by the

kernels of the canonical morphisms V ! Vi ; in particular, finite dimensional admissi-
ble Uqg-modules are considered with discrete topology. If the morphisms V ! Vi are
surjective, then for any finite dimensional admissible Uqg-module W any continuous
Uqg-module map V ! W factors through Vi for some i, so the space of such maps is
the inductive limit of HomUqg(Vi; W ), as required.

The category pro-Cq(g) is monoidal, with the tensor product defined by

fVigi 
 fWjgj = fVi 
Wjgi;j ;
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but it is not a C� -tensor category.
Returning to the construction of a representing object, the simplest possibility is to

take U (Gq). But our module M will have the additional important property that the
left action of Uqg extends to an action of U (Gq�Gq) under the embedding �̂q : Uqg!

U (Gq�Gq). A way to think of M is as a completion of Uq(g�h), with the action of Uqg

Uqg defined using the Poincare-Birkhoff-Witt decomposition Uq(g�h) = Uqb�
Uqb+ ,
where the action of Uq(g � h) on Uqb� is defined by identifying the latter space with

the induced module Ind
Uq(g�h)

Uqb�
"̂q .

The construction of M is based on the following representation-theoretic result, see
e.g., [60, Proposition 23.3.10]. Recall first that for a unitary Uqg-module V we denote

by �V the conjugate module, with the action of Uqg given by !�� = R̂q(!)��. For the
highest weight vector �� 2 V� , the vector ��� is a lowest weight vector of weight ��.

Proposition 3.3.3. — For any finite dimensional admissible Uqg-module V and � 2 P , the map

HomUqg( �V� 
 V�+�; V )! V (�); f 7! f(��� 
 ��+�);

is an isomorphism for all sufficiently large weights � 2 P+ .

The modules �V� 
 V�+� form a projective system in a natural way.

Lemma 3.3.4. — For any � 2 P and �; � 2 P+ such that � + � 2 P+ , there exists a unique
morphism

tr
�
�;�+� : �V�+� 
 V�+�+� ! �V� 
 V�+�

such that ���+� 
 ��+�+� 7! ��� 
 ��+� .

Proof. — The uniqueness is clear, since the vector ���+� 
 ��+�+� is cyclic.
In order to show the existence, we introduce auxiliary maps. For �; � 2 P+ , the vec-

tor ��
 �� is killed by the Ei ’s and has weight �+�. Hence we can define a morphism

T�;� : V�+� ! V� 
 V� such that ��+� 7! �� 
 ��:

Similarly define a morphism

�T�;� : �V�+� ! �V� 
 �V� such that ���+� 7! ��� 
 ���:

In addition, since �V� is conjugate to V� , there exists a unique up to a scalar factor
nonzero morphism

S� : �V� 
 V� ! V0 = C:

We normalize it so that S�(��� 
 ��) = 1.
Then the required map tr

�
�;�+� can be written as the composition

�V�+� 
 V�+�+�

�T�;�
T�;�+�
�������! �V� 
 �V� 
 V� 
 V�+�

�
S�
�
����! �V� 
 V�+�:
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Denote by M� the pro-object defined by the projective system f �V� 
 V�+�g� . By
Proposition 3.3.3 it represents the functor Cq(g) ! Hilbf , V 7! V (�), so we have
natural isomorphisms

Hom(M�; V ) �= V (�):

These can also be described as follows. By slightly abusing notation denote by the same
symbol M� the topological Uqg-module lim

 
�V�
V�+� . Let 
� 2 M� be the limit vector

of weight � defined by the cyclic vectors ��� 
 ��+� . Then 
� is a topologically cyclic
vector for M� , and the isomorphism HomUqg(M�; V ) �= V (�) is given by f 7! f(
�).

We are now ready to define our pro-object representing the forgetful functor:

M =

(M
�2X

�V� 
 V�+�

)
X;�

;

where the index set consists of pairs (X; �) such that X � P is finite and � 2 P+ is
such that � + � 2 P+ for all � 2 X . The maps

L
�2X

�V� 
 V�+� !
L

�2Y
�V� 
 V�+� are

defined for Y � X and �� � 2 P+ as the composition of the projectionM
�2X

�V� 
 V�+� !
M
�2Y

�V� 
 V�+�

with the map
L

�2Y
�V� 
 V�+� !

L
�2Y

�V� 
 V�+� defined by the maps tr
���
�;�+� .

If we think of M as a topological Uqg-module, then

M =
Y
�2P

M�:

Due to the weight decomposition of V , the pro-object M indeed represents the forget-
ful functor Cq(g)! Hilbf . Let

�V : Hom(M; V )! V

be the canonical isomorphism of these two functors. Again, if we view M as a topo-
logical Uqg-module, then this isomorphism can be described as follows. The vector

 = (
�)� 2

Q
�M� = M is topologically cyclic, and

�V (f) = f(
) for f 2 HomUqg(M; V ):

Our next goal is to define a comonoid structure on M . On the level of modules
the formula is straightforward to guess. First of all note that the pro-object M 
 M

considered as a topological module isY
�1;�22P

M�1

M�2

;

where

M�1

M�2

= lim
 ���
�1 ;�2

( �V�1 
 V�1+�1
)
 ( �V�2 
 V�2+�2

):
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Lemma 3.3.5. — There exists a unique morphism � : M ! M 
M such that on the level of
modules we have �(
) = 


 = (
�1



�2
)�1;�2

.

Proof. — The uniqueness is clear, since 
 is a topologically cyclic vector. In order to
prove the existence note that since � should preserve the weight decompositions, we
must have

�(
�) = (
�1


�2

)�1+�2=�:

Therefore we have to show that for all �1; �2 2 P there exists a morphism

��1;�2
: M�1+�2

! M�1

M�2

such that ��1;�2
(
�1+�2

) = 
�1


�2

:

In order to define ��1;�2
it suffices to show that there exist morphisms

m�;�;�1;�2
: �V�+� 
 V�1+�2+�+� ! �V� 
 V�1+� 
 �V� 
 V�2+�

that map ���+� 
 ��1+�2+�+� into ��� 
 ��1+� 
 ��� 
 ��2+� . Since ���+� 
 ��1+�2+�+� is
a cyclic vector, the morphism m is unique, if it exists. In order to show the existence,
recall first that the braiding � = �Rq in Cq(g) is given by

� : �V� 
 V� ! V� 
 �V�; ��� 
 �� 7! q�(�;�)�� 
 ���;

and then write m as the composition

�V�+� 
 V�1+�2+�+�

�T�;�
T�1+�;�2+�
���������! �V� 
 �V� 
 V�1+� 
 V�2+�

q(�1+�;�)(�
�
�)
����������! �V� 
 V�1+� 
 �V� 
 V�2+�:

We also introduce a morphism " : M ! C by "(
) = 1. In other words, " is deter-
mined by the morphisms

tr
�
0;0 = S� : �V� 
 V� ! C:

It is straightforward to check that (M; �; ") is a comonoid. Since �V (f) = f(
), by
definition of � we also immediately get �U
V ((f 
 g)�) = �U (f) 
 �V (g). Thus we
obtain the following result.

Theorem 3.3.6. — The triple (M; �; ") is a comonoid in pro-Cq(g) representing the canonical
fiber functor Cq(g)! Hilbf .

Just as the regular comonoid U (G) is a U (G)-bimodule, M carries a right action
of Uqg. In other words, the algebra (Uqg)

op with the opposite multiplication acts by
endomorphisms on the pro-object M . For an element X 2 Uqg denote by ~X the same
element considered as an element of (Uqg)

op .

Theorem 3.3.7. — There exists a unique representation (Uqg)
op ! End(M) such that on the

level of modules we have ~X
 = X
 for all X 2 Uqg.
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Proof. — The uniqueness is again clear. For the proof of the existence we will assume
that q 6= 1, the case q = 1 requires only minor, mostly notational, changes.

Since ~Ki should preserve the weight components of M , we must have ~Ki
� =

q
�(i)
i 
� = Ki
� . Thus we let ~Ki act on M� by the scalar q

�(i)
i . For the same reason we

must have
~Fi
� = Fi
�+�i and ~Ei
� = Ei
���i :

To prove the theorem it suffices to show that such morphisms M� ! M�+�i and
M� ! M���i indeed exist, since then we get ~Xn : : : ~X1
 = X1 : : : Xn
 for all
X1; : : : ; Xn 2 fFi; Ei; Ki; K

�1
i g, which by the topological cyclicity of 
 shows that

any relation in (Uqg)
op is satisfied by the endomorphisms ~Fi; ~Ei; ~Ki; ~K�1

i of M .
In order to define ~Fi : M� ! M�+�i it suffices to show that for sufficiently large �

and � there exist morphisms

	
�
i;�;�+�i+� : �V�+� 
 V�+�+� ! �V� 
 V�+�i+�

such that
���+� 
 ��+�+� 7! �̂q(Fi)(��� 
 ��+�i+�) = ��� 
 Fi��+�i+�:

For this, in turn, consider �; � 2 P+ such that �(i); �(i) � 1. Then the space (V� 


V�)(�+���i) is 2-dimensional, spanned by Fi��
 �� and ��
Fi�� . As one can easily
check, this space has a unique up to a scalar factor vector killed by Ei , namely,

[�(i)]qi�� 
 Fi�� � q
�(i)
i [�(i)]qiFi�� 
 ��:

In other words, the isotypic component of V�
V� with highest weight �+���i is the
image of the morphism

�i;�;� : V�+���i ! V� 
 V�

such that
��+���i 7! [�(i)]qi�� 
 Fi�� � q

�(i)
i [�(i)]qiFi�� 
 ��:

The morphism 	
�
i;�;�+�i+� can now be written as the composition

�V�+� 
 V�+�+�

[�(i)]�1
qi

�T�;�
�i;�;�+�i+�
��������������! �V� 
 �V� 
 V� 
 V�+�i+�

�
S�
�
����! �V� 
 V�+�i+�:

Similarly, consider the morphisms

��i;�;� : �V�+���i !
�V� 
 �V�

such that
���+���i 7! [�(i)]qiEi

��� 
 ��� � q
�(i)
i [�(i)]qi

��� 
 Ei���:

Then ~Ei : M� ! M���i is defined using the morphisms

�
�
i;�+�i;�+� : �V�+� 
 V�+�+� ! �V�+�i 
 V�+�

such that
���+� 
 ��+�+� 7! �̂q(Ei)(���+�i 
 ��+�) = Ei���+�i 
 ��+�;
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which are well-defined as they can be written as the compositions

�V�+� 
 V�+�+�

[�(i)]�1
qi

��i;�+�i;�

T�;�+�

��������������! �V�+�i 

�V� 
 V� 
 V�+�

�
S�
�
����! �V�+�i 
 V�+�:

The action of (Uqg)
op allows us to consider the functor Hom(M; �) as a functor

from Cq(g) into the category of finite dimensional admissible Uqg-modules: the action
of Uqg on Hom(M; V ) is defined by Xf = f ~X . Furthermore, it is immediate that

� ~X = �̂q( ~X)� and " ~X = "̂q(X)"

for all X 2 Uqg. Hence Hom(M; �) is a tensor functor. This functor is monoidally iso-
morphic, via the natural isomorphisms �V , to the identity functor on Cq(g).

References. — [33], [49], [60], [70].

3.4. COMPUTATION OF INVARIANT SECOND COHOMOLOGY

Let Gq , q > 0, be the q -deformation of a simply connected semisimple compact Lie
group G. As follows from the discussion in Section 3.2, the center Z(G) of G can be
considered as a subgroup of the quantum group Gq . Therefore, as was already used in
Example 3.1.11, any T-valued dual 2-cocycle on Z(G) can be induced to a dual 2-co-
cycle on Gq . More explicitly, a dual 2-cocycle on Z(G) is a 2-cocycle c on [Z(G) = P=Q.
Then the induced dual cocycle Ec on Gq acts on V� 
 V� as multiplication by c(�; �).
This cocycle is obviously invariant. It turns out that this way we get all invariant cocycles
up to coboundaries.

Theorem 3.4.1. — The homomorphism c 7! Ec induces an isomorphism

H2(P=Q; T) �= H2
Gq

(Ĝq; T) = H2
Gq

(Ĝq; C�):

Before we turn to the proof, let us see what the result means for simple groups.

Corollary 3.4.2. — If g is simple and g 6�= so4n(C) for n � 1, then the groups H2
Gq

(Ĝq; T)

and H2
Gq

(Ĝq; C�) are trivial, and if g �= so4n(C), then H2
Gq

(Ĝq; T) = H2
Gq

(Ĝq; C�) �= Z=2Z.

Proof. — For simple Lie algebras the group P=Q is cyclic unless g �= so4n(C), in which
case P=Q �= Z=2Z� Z=2Z, see e.g., Table IV on page 516 in [39].

Turning to the proof of the theorem, note that it suffices to show that the map
c 7! Ec induces an isomorphism H2(P=Q; C�) �= H2

Gq
(Ĝq; C�). Indeed, since P=Q is

finite, the map H2(P=Q; T) ! H2(P=Q; C�) is an isomorphism, so we conclude that
any C� -valued invariant dual 2-cocycle on Gq is represented by a unitary cocycle. At the
same time the map H2

Gq
(Ĝq; T) ! H2

Gq
(Ĝq; C�) is injective by Lemma 3.1.5. Therefore

we get H2
Gq

(Ĝq; T) �= H2
Gq

(Ĝq; C�) �= H2(P=Q; T).
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Our first goal will be to construct a homomorphism

H2
Gq

(Ĝq; C�)! H2(P=Q; C�)

that is a left inverse of the map [c] 7! [Ec].
Assume E is an invariant dual 2-cocycle on Gq . Then it acts by multiplication by a

nonzero scalar on every isotypic component of V�
V� of multiplicity one. In particular,
consider the isotypic component corresponding to the weight �+ �. It is the image of
the map T�;� : V�+� ! V�
V� , ��+� 7! ��
�� , introduced in the proof of Lemma 3.3.4.
Hence there exists "(�; �) 2 C� such that

E T�;� = "(�; �)T�;�:

Lemma 3.4.3. — The map P+ � P+ ! C� , (�; �) 7! "(�; �), is a 2-cocycle on P+ , that is,

"(�; �)"(� + �; �) = "(�; �)"(�; � + �):

Furthermore, the cohomology class ["] of " in H2(P+; C�) depends only on the class of E
in H2

Gq
(Ĝq; C�).

Proof. — The assertion that " is a cocycle follows from the identity

(T�;� 
 �)T�+�;� = (�
 T�;�)T�;�+�

by applying the operator (E 
 1)(�̂q 
 �)(E ) to the left hand side and the same oper-
ator (1
 E )(�
 �̂q)(E ) to the right hand side.

Note that if a 2 U (Gq) is a central element acting on V� as multiplication by a
scalar a(�), then the action of (a 
 a)�̂q(a)

�1 on the image of T�;� is given by mul-
tiplication by a(�)a(�)a(�+ �)�1 . This shows that the cohomology class of " depends
only on that of E .

We claim that " is cohomologous to a cocycle defined on P=Q. We need some prepa-
ration to prove this.

Fix 1 � i � r . For weights �; � 2 P+ with �(i); �(i) � 1 the isotypic component
of V� 
 V� corresponding to the weight � + � � �i is nonzero. It is the image of the
morphism

�i;�;� : V�+���i ! V� 
 V�

such that

��+���i 7! [�(i)]qi�� 
 Fi�� � q
�(i)
i [�(i)]qiFi�� 
 ��;

which we introduced in the proof of Theorem 3.3.7. Hence there exists "i(�; �) 2 C�

such that

E �i;�;� = "i(�; �)�i;�;�:
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Lemma 3.4.4. — For any �; �; � 2 P+ with �(i); �(i); �(i) � 1 we have

"i(� + �; �)"(�; �) = "i(�; �)"(� + �� �i; �)

= "i(�; � + �)"(�; �) = "i(�; �)"(�; � + �� �i):

Proof. — Consider the module V� 
 V� 
 V� . We have

V� 
 V� 
 V� �= (V�+� � V�+���i � : : : )
 V�

�= (V�+�+� � V�+�+���i � : : : )� (V�+�+���i � : : : )� : : : :

We see that the isotypic component corresponding to �+�+���i has multiplicity two,
and it is spanned by the images of (T�;� 
 �)�i;�+�;� and (�i;�;� 
 �)T�+���i;� . Similarly,
if we first consider the decomposition of V� 
 V� , we conclude that the same isotypic
component is spanned by the images of (�
T�;�)�i;�;�+� and (�
�i;�;�)T�;�+���i . These
four maps are related by the identities

(3.4.1) [�(i)]qi(T�;� 
 �)�i;�+�;� � [�(i)]qi(�i;�;� 
 �)T�+���i;�

= [�(i) + �(i)]qi(�
 �i;�;�)T�;�+���i ;

(3.4.2) [�(i)]qi(�
 T�;�)�i;�;�+� � [�(i)]qi(�
 �i;�;�)T�;�+���i

= [�(i) + �(i)]qi(�i;�;� 
 �)T�+���i;�;

as can be checked by applying both sides to the highest weight vector ��+�+���i .
The morphisms (T�;� 
 �)�i;�+�;� , (�i;�;� 
 �)T�+���i;� , (� 
 T�;�)�i;�;�+� and (� 


�i;�;�)T�;�+���i are eigenvectors of the operator of multiplication by

(E 
 1)(�̂q 
 �)(E ) = (1
 E )(�
 �̂q)(E )

on the left, with eigenvalues "(�; �)"i(�+ �; �), "i(�; �)"(�+ �� �i; �), "(�; �)"i(�; �+

�) and "i(�; �)"(�; � + � � �i), respectively. At the same time these eigenvectors have
the property that any two of them are linearly independent and any three of them are
linearly dependent. This is possible only when all four eigenvalues coincide.

We will also need to know that any symmetric cocycle on P+ is a coboundary. This
can be easily deduced from the corresponding well-known statement for abelian
groups, but for future reference we will establish a more precise result.

Lemma 3.4.5. — Let (�; �) 7! c(�; �) be a symmetric C� -valued 2-cocycle on P+ . Then for
any nonzero complex numbers b1; : : : ; br there exists a unique map P+ 3 � 7! b(�) 2 C� such
that

c(�; �) = b(� + �)b(�)�1b(�)�1; b(!i) = bi for i = 1; : : : ; r;

where !1; : : : ; !r are the fundamental weights.
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Proof. — It is clear that the map b is unique, if it exists. To show the existence, for a
weight � 2 P+ , � = k1!1 + � � �+ kr!r , put j�j = k1 + � � �+ kr . Define b(�) by induction
on j�j as follows. If �� !i is dominant for some i, then put

b(�) = c(�� !i; !i)b(�� !i)b(!i):

We have to check that b(�) is well-defined. In other words, if � = �+!i +!j , then we
must show that

c(� + !j ; !i)b(� + !j)b(!i) = c(� + !i; !j)b(� + !i)b(!j):

Using the cocycle identities c(� + !j ; !i)c(�; !j) = c(�; !j + !i)c(!j ; !i) and

c(� + !i; !j)c(�; !i) = c(�; !i + !j)c(!i; !j);

as well as that c(!i; !j) = c(!j ; !i) by assumption, we equivalently have to check that

c(�; !i)b(� + !j)b(!i) = c(�; !j)b(� + !i)b(!j):

Since c(�; !i) = b(� + !i)b(�)
�1b(!i)

�1 and c(�; !j) = b(� + !j)b(�)
�1b(!j)

�1 by the
inductive assumption, this identity indeed holds.

Therefore we have constructed a map b such that b(0) = c(0; 0), b(!i) = bi and
c(�; !i) = b(� + !i)b(�)�1b(!i)

�1 for i = 1; : : : ; r and � 2 P+ . By induction on j�j
one can easily check that the identity c(�; �) = b(� + �)b(�)�1b(�)�1 holds for all
�; � 2 P+ .

Given a cocycle on P=Q, we can consider it as a cocycle on P and then get a cocycle
on P+ by restriction. Thus we have a homomorphism H2(P=Q; C�) ! H2(P+; C�). It
is injective, since the quotient map P+ ! P=Q is surjective and a cocycle on P=Q is a
coboundary if it is symmetric.

Lemma 3.4.6. — For every invariant 2-cocycle E on Ĝq the cohomology class of " in
H2(P+; C�) is contained in the image of H2(P=Q; C�).

Proof. — Put b(�; �) = "(�; �)"(�; �)�1: The same computation as in the group case
shows that b is a skew-symmetric bi-quasi-character, so it is a C� -valued function such
that

b(� + �; �) = b(�; �)b(�; �); b(�; � + �) = b(�; �)b(�; �); b(�; �) = 1:

It extends uniquely to a skew-symmetric bi-quasi-character on P . To prove the lemma
it suffices to show that the root lattice Q is contained in the kernel of this extension.
Indeed, since H2(P=Q; C�) is isomorphic to the group of skew-symmetric bi-characters
on P=Q, it then follows that there exists a cocycle c on P=Q such that the cocycle "c�1

on P+ is symmetric. Then by Lemma 3.4.5 the cocycle "c�1 is a coboundary, so " and
the restriction of c to P+ are cohomologous.
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By Lemma 3.4.4, for any 1 � i � r we have

"i(�; �)"(� + �� �i; �) = "i(�; �)"(�; � + �� �i):

Applying this to � = � = � we get

b(2�� �i; �) = 1:

Since b is skew-symmetric, this gives b(�i; �) = 1. This identity holds for all � 2 P+ with
�(i) � 1. Since every element in P can be written as a difference of two such elements
�, it follows that �i is contained in the kernel of b.

Hence the map E 7! " induces a homomorphism H2
Gq

(Ĝq; C�) ! H2(P=Q; C�).

Clearly, it is a left inverse of the homomorphism H2(P=Q; C�) ! H2
Gq

(Ĝq; C�),
[c] 7! [Ec], constructed earlier. Thus it remains to prove that the homomorphism
H2
Gq

(Ĝq; C�)! H2(P=Q; C�) is injective.

Assume that E is an invariant 2-cocycle such that the cocycle " on P+ is a cobound-
ary. We have to show that E is the coboundary of a central element in U (Gq).

By assumption there exist c(�) 2 C� such that

"(�; �) = c(� + �)c(�)�1c(�)�1:

The numbers c(�), � 2 P+ , define an invertible element c in the center of U (Gq).
Then replacing E by (c�1
 c�1)E �̂q(c) we get a new invariant 2-cocycle that is coho-
mologous to E and is such that the corresponding 2-cocycle on P+ is trivial. In other
words, without loss of generality we may assume that

(3.4.3) "(�; �) = 1 for all �; � 2 P+:

Note that this in particular implies that E is counital, since ("̂q 
 �)(E ) acts on V� as
multiplication by "(0; �).

As before, let "i(�; �) be such that E �i;�;� = "i(�; �)�i;�;� .

Lemma 3.4.7. — Assume the cocycle E satisfies condition (3.4.3). Then, for every 1 � i � r ,
the numbers "i(�; �) do not depend on �; � 2 P+ such that �(i); �(i) � 1.

Proof. — By Lemma 3.4.4, we have

"i(�; �) = "i(�; �)

for all �; �; � 2 P+ with �(i); �(i); �(i) � 1. For arbitrary �; �; ~�; ~�, applying this identity
twice, we get "i(�; �) = "i(�; ~�) = "i(~�; ~�):

Define a homomorphism � : Q! C� by letting �(�i) = "i(�; �)�1 for �; � 2 P+ with
�(i); �(i) � 1, 1 � i � r . Extend � to a homomorphism P ! C� . The restriction of �
to P+ defines a central element c of U (Gq) such that

(c
 c)�̂q(c)
�1�i;�;� = �(�)�(�)�(� + �� �i)

�1�i;�;� = �(�i)�i;�;� = "i(�; �)�1�i;�;�:
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Thus replacing E by the cohomologous cocycle (c 
 c)E �̂q(c)
�1 we get an invariant

2-cocycle, which we again denote by E , such that

(3.4.4) "i(�; �) = 1 for all 1 � i � r and �; � 2 P+ with �(i); �(i) � 1:

Note that condition (3.4.3) for this new cocycle is still satisfied, since � is a homomor-
phism on P+ .

Therefore to prove the injectivity of H2
Gq

(Ĝq; C�)! H2(P=Q; C�) it suffices to estab-
lish the following result.

Proposition 3.4.8. — If E is an invariant 2-cocycle on Ĝq with properties (3.4.3) and (3.4.4),
then E = 1.

For G = SU(2) the weight lattice P is identified with 1
2Z and the root lattice with

Z. For s 2 1
2N, we have V1=2 
 Vs �= Vs+1=2 � Vs�1=2 . Therefore conditions (3.4.3) and

(3.4.4) imply that E acts trivially on V1=2 
 Vs .
Now for s; t � 1=2 consider the morphism T1=2;s 
 � : Vs+1=2 
 Vt ! V1=2 
 Vs 
 Vt

and compute:

(T1=2;s 
 �)E = (�̂q 
 �)(E )(T1=2;s 
 �)

= (1
 E )(�
 �̂q)(E )(E �1 
 1)(T1=2;s 
 �)

= (1
 E )(T1=2;s 
 �);

since E acts trivially on V1=2
V for any V . It follows that if E acts trivially on Vs
Vt , it
acts trivially on Vs+1=2
Vt . Therefore an induction argument shows that E acts trivially
on Vs 
 Vt for all s and t, so E = 1.

For general G one can similarly show that it suffices to check that E acts trivially
on V!i 
 V� , but it is not clear whether it is possible to check this property directly
using conditions (3.4.3) and (3.4.4). We will prove the proposition by showing first that
E defines an automorphism of the Kazhdan-Lusztig comonoid M introduced in the
previous section.

Let us start by making a few remarks. For � 2 P let �� = �w0�, where w0 is the longest
element of the Weyl group. It is known that if � 2 P+ then ��� is the lowest weight
of V� , so �� is the highest weight of �V� . For 1 � i � r let �i be such that ��i = ��i and
!�i = �!i . Recall that in Section 3.3 we introduced morphisms �T�;� and ��i;�;� . The first
is an isomorphism of �V�+� onto the isotypic component of �V� 
 �V� with lowest weight
�� � �, that is, with highest weight �� + ��. The second is an isomorphism of �V�+���i

onto the isotypic component with lowest weight ����+�i , hence with highest weight
��+ ��� ��i . Therefore if we fix isomorphisms �V� �= V�� , then �T�;� and ��i;�;� coincide with
T��;�� and ��i;��;�� up to scalar factors. Hence properties (3.4.3) and (3.4.4) also imply that

E �T�;� = �T�;� and E ��i;�;� = ��i;�;�:
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Recall also that in Section 3.3 we introduced a morphism S� : �V� 
 V� ! V0 = C
such that S�(��� 
 ��) = 1. Since E is invertible, the morphism S�E : �V� 
 V� ! C is
nonzero, hence it is a nonzero multiple of S� , so S�E = �(�)S� for some �(�) 2 C� .
Explicitly, �(�) = S�E (��� 
 ��).

Finally, recall that in Lemma 3.3.4 we defined morphisms

tr
�
�;�+� = (�
 S� 
 �)( �T�;� 
 T�;�+�) : �V�+� 
 V�+�+� ! �V� 
 V�+�:

Lemma 3.4.9. — For all �; � 2 P+ and � 2 P such that � + � 2 P+ we have tr
�
�;�+� E =

�(�)E tr
�
�;�+� .

Proof. — Applying �
 �
 �̂q to the cocycle identity

(E 
 1)(�̂q 
 �)(E ) = (1
 E )(�
 �̂q)(E );

we get

(E 
 1
 1)(�̂q 
 �̂q)(E ) = (1
 (�
 �̂q)(E ))(�
 �̂
(2)
q )(E );

where �̂
(2)
q = (�
 �̂q)�̂q . Replacing (�
 �̂q)(E ) by (1
E �1)(E 
 1)(�̂q 
 �)(E ) on

the right hand side, we then get

(E 
 E )(�̂q 
 �̂q)(E ) = (1
 E 
 1)(1
 (�̂q 
 �)(E ))(�
 �̂
(2)
q )(E );

which can also be written as

(�̂q 
 �̂q)(E ) = (1
 E 
 1)(1
 (�̂q 
 �)(E ))(�
 �̂
(2)
q )(E )(E �1 
 E �1);

since E commutes with the image of �̂q by the invariance assumption.
We then compute:

tr
�
�;�+� E = (�
 S� 
 �)( �T�;� 
 T�;�+�)E

= (�
 S� 
 �)(�̂q 
 �̂q)(E )( �T�;� 
 T�;�+�)

= (�
 S� 
 �)(1
 E 
 1)(1
 (�̂q 
 �)(E ))

(�
 �̂
(2)
q )(E )(E �1 
 E �1)( �T�;� 
 T�;�+�):

By condition (3.4.3) the last expression equals

(�
 S� 
 �)(1
 E 
 1)(1
 (�̂q 
 �)(E ))(�
 �̂
(2)
q )(E )( �T�;� 
 T�;�+�):

Since S�E = �(�)S� , S��̂q(!) = "̂q(!)S� and ("̂q 
 �)(E ) = 1 by (3.4.3), this expres-
sion equals

�(�)(�
 S� 
 �)(�
 �̂
(2)
q )(E )( �T�;� 
 T�;�+�);

and using again S��̂q(!) = "̂q(!)S� and ("̂q 
 �)�̂q = � we obtain

�(�)E (�
 S� 
 �)( �T�;� 
 T�;�+�) = �(�)E tr
�
�;�+� :
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In particular, using that S�+� = tr
�+�
0;0 = tr

�
0;0 tr

�
�;� we get

�(� + �)S�+� = S�+�E = S� tr
�
�;� E = �(�)S�E tr

�
�;�

= �(�)�(�)S� tr
�
�;� = �(�)�(�)S�+�:

Thus the map � : P+ ! C� is a homomorphism, hence it extends to a homomorphism
P ! C� , which we continue to denote by �. This together with the above lemma im-
plies that the morphisms

�(�)�1E : �V� 
 V�+� ! �V� 
 V�+�

are consistent with tr, hence define an automorphism E0 of the pro-object M .
Recall that according to Theorem 3.3.7 we have an action of (Uqg)

op on M .

Lemma 3.4.10. — The automorphism E0 commutes with the action of (Uqg)
op on M .

Proof. — We will assume that q 6= 1, the case q = 1 requires only minor changes. Let
us show first that for all 1 � i � r we have

~EiE0 = �(�i)E0
~Ei; ~FiE0 = E0

~Fi and ~KiE0 = E0
~Ki:

The morphism ~Ei is defined using the morphisms �
�
i;�+�i;�+� given by the compo-

sition

�V�+� 
 V�+�+�

[�(i)]�1
qi

��i;�+�i;�

T�;�+�

��������������! �V�+�i 

�V� 
 V� 
 V�+�

�
S�
�
����! �V�+�i 
 V�+�:

The same proof as that of Lemma 3.4.9 shows that

�
�
i;�+�i;�+�E = �(�)E �

�
i;�+�i;�+�:

The only difference is that �T�;� in that lemma gets replaced by ��i;�+�i;� and then in-
stead of condition (3.4.3) one uses condition (3.4.4). Dividing both sides of the above
identity by �(� + �), we get ~EiE0 = �(�i)E0

~Ei .
Similarly, ~Fi is defined using the morphisms 	

�
i;�;�+�i+� given by the composition

�V�+� 
 V�+�+�

[�(i)]�1
qi

�T�;�
�i;�;�+�i+�
��������������! �V� 
 �V� 
 V� 
 V�+�i+�

�
S�
�
����! �V� 
 V�+�i+�:

It follows that
	

�
i;�;�+�i+�E = �(�)E 	

�
i;�;�+�i+�;

and dividing both sides by �(� + �) we get ~FiE0 = E0
~Fi .

The commutation with ~Ki is obvious.
Since ~Ei ~Fi � ~Fi ~Ei coincides with ~Ki � ~K�1

i up to a scalar factor, we conclude that

(�(�i)� 1)E0( ~Ki � ~K�1
i ) = 0:

Since E0 is invertible, this is possible only when �(�i) = 1. Hence � is trivial on Q and
E0 commutes with the action of (Uqg)

op .
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Proof of Proposition 3.4.8. — Consider the functor F = Hom(M; �) from Cq(g) into the
category of finite dimensional admissible Uqg-modules. The automorphism E0 of M
defines an automorphism of F that maps f : M ! V into fE0 . As we showed in Sec-
tion 3.3, the functor F is isomorphic to the identity functor on Cq(g). Hence E0 de-
fines an automorphism of the latter functor. Since the algebra of endomorphisms of
the identity functor can be identified with the center of U (Gq), the automorphism E0

therefore defines an invertible central element c 2 U (Gq). By construction of M and
the isomorphisms �V : F (V )! V , this means that for any morphism f : �V�
V�+� ! V

we have

�(�)�1f(E (��� 
 ��+�)) = cf(��� 
 ��+�):

Since this is true for any f and V , and the vector ��� 
 ��+� is cyclic, we get

E = �(�)�̂q(c) on �V� 
 V�+�:

In other words, if we introduce a central element b that acts as multiplication by �(�)

on �V� �= V�� , then

E = (b
 1)�̂q(c):

Since E is counital, applying "̂q 
 � and �
 "̂q to this identity we obtain

"̂q(b)c = 1 = bc:

Hence b and c are scalar and E = 1. This finishes the proof of Proposition 3.4.8 and
thus also of Theorem 3.4.1.

We now formulate an important corollary to Theorem 3.4.1. Recall that the category
Cq(g) is braided, with braiding � = �Rq .

Definition 3.4.11. — We say that an invariant dual 2-cocycle E on Gq is symmetric, if
E commutes with �, that is, RqE = E21Rq .

Corollary 3.4.12. — If E is a symmetric invariant dual 2-cocycle on Gq , then E = (c 


c)�̂q(c)
�1 for an invertible central element c 2 U (Gq). Furthermore, if E is unitary, then

c can also be chosen to be unitary.

Proof. — Since � maps the isotypic component of V�
V� corresponding to the weight
�+� onto the isotypic component of V�
 V� with the same weight, the identity E � =

�E implies that "(�; �) = "(�; �). Therefore the cocycle " on P+ is symmetric. Hence
it is a coboundary by Lemma 3.4.5, so the image of E in H2(P=Q; C�) is trivial.

Finally, we remark that for q = 1 the above methods can be easily extended to all
connected compact Lie groups. Using that any compact group is a projective limit of
Lie groups, one then can prove the following.
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Theorem 3.4.13. — For any compact connected group G we have a canonical isomorphism

H2
G(Ĝ; T) �= H2( [Z(G); T):

If G is in addition separable, then we also have a canonical isomorphism

H2
G(Ĝ; C�) �= H2( [Z(G); C�):

References. — [38], [70], [71].
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CHAPTER 4

DRINFELD TWISTS

In this chapter we give a precise relation between the tensor categories of repre-
sentations of a simply connected semisimple compact Lie group G and its q -deforma-
tion Gq . It turns out that these categories become equivalent once we replace the triv-
ial associativity morphisms in RepG by certain morphisms defined by monodromy of
a remarkable system of differential equations. We then discuss operator algebraic im-
plications of this result, as well as its most famous consequence, the Drinfeld-Kohno
theorem.

4.1. DRINFELD CATEGORY

Throughout the whole chapter we denote by G a simply connected semisimple
compact Lie group. As in Section 2.4, fix a nondegenerate symmetric ad-invariant
form (�; �) on g such that its restriction to the real Lie algebra of G is negative definite.
Let t =

P
i xi 
 xi 2 g
 g be the element defined by this form, so fxigi is a basis in g

and fxigi is the dual basis. Explicitly, we can write

t =
X
i;j

(B�1)ijHi 
Hj +
X

�2�+

d�(F� 
 E� + E� 
 F�);

where B is the matrix ((�_i ; �
_
j ))i;j = (d�1

j aij)i;j . By the ad-invariance of our fixed form,

the element t is invariant, that is, it commutes with all elements of the form �̂(!), ! 2
Ug. Note also that since �̂(X) = X 
 1 + 1
 X for X 2 g, we have

(4.1.1) (�̂
 �)(t) = t13 + t23; (�
 �̂)(t) = t12 + t13:

Fix a number ~ 2 C. Let V1; : : : ; Vn be finite dimensional g-modules. Denote by Yn
the set of points (z1; : : : ; zn) 2 Cn such that zi 6= zj for i 6= j . The system of Knizhnik-
Zamolodchikov equations in n variables is the system of differential equations

@v

@zi
= ~

X
j 6=i

tij
zi � zj

v; i = 1; : : : ; n;

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



124 CHAPTER 4. DRINFELD TWISTS

where v : Yn ! V1 
 � � � 
 Vn . We denote it by KZn .
This system is consistent in the sense that the differential operators

ri =
@

@zi
� ~

X
j 6=i

tij
zi � zj

commute with each other, or in other words, they define a flat holomorphic connec-
tion on the trivial vector bundle over Yn with fiber V1
 � � � 
 Vn . This is not difficult to
check using that t is symmetric and that [tij + tjk; tik] = 0, which follows from (4.1.1)
and the invariance of t.

The consistency of the KZn equations implies that locally for each z0 2 Yn and
v0 2 V1 
 � � � 
 Vn there exists a unique holomorphic solution v with v(z0) = v0 .
If 
 : [0; 1] ! Yn is a path starting at 
(0) = z0 , then this solution can be analyti-
cally continued along 
. The map v0 7! v(
(1)) defines a linear isomorphism M


of V1 
 � � � 
 Vn onto itself. The monodromy operator M
 depends only on the ho-
motopy class of 
. In particular, for each base point z0 2 Yn we get a representation
of the fundamental group �1(Yn; z

0) on V1 
 � � � 
 Vn by monodromy operators. This
fundamental group is isomorphic to the pure braid group PBn , which is the kernel
of the canonical homomorphism from the braid group Bn into the symmetric group
Sn . Recall that Bn is generated by elements g1; : : : ; gn�1 satisfying the braid relations
gigi+1gi = gi+1gigi+1 and gigj = gjgi if ji � jj > 1. The subgroup PBn is generated
by the elements gi : : : gj�1 g

2
j g
�1
j�1 : : : g

�1
i , 1 � i < j � n � 1. If V1 = � � � = Vn , then

the representation of PBn by monodromy operators extends to the whole braid group.
Namely, the action of Sn on Yn and V1
� � �
Vn allows us to define a bundle over Yn=Sn
with fiber V1 
 � � � 
 Vn , so we get a representation of �1(Yn=Sn) �= Bn on V1 
 � � � 
 Vn
by monodromy operators.

More explicitly, choose a point z0 = (x0
1; : : : ; x

0
n) with real coordinates such that

x0
i < x0

i+1 . Consider a path �i of the form

� : : : � >> �
��

: : : �

x0 xi xi+1 xn

from z0 to the point obtained by flipping the coordinates x0
i and x0

i+1 . Then, assuming
that V1 = � � � = Vn , we get a representation of Bn on V1 
 � � � 
 Vn defined by

gi 7! �i;i+1M�i ;

where �i;i+1 is the flip on Vi 
 Vi+1 .
For n = 2 this representation is simply g1 7! �e�i~t . Consider the first nontrivial

case, n = 3.

COURS SPÉCIALISÉS 20
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We look for solutions of KZ3 of the form

v(z1; z2; z3) = (z3 � z1)~(t12+t23+t13)w

�
z2 � z1
z3 � z1

�
:

Then w must satisfy

w0 = ~
�
t12

z
+

t23

z � 1

�
w:

More generally, assume A and B are operators on a finite dimensional space V and
consider solutions of the equation

(4.1.2) w0(z) =

�
A

z
+

B

z � 1

�
w(z):

We need the following standard result on differential equations with singularities,
see e.g., [68, Proposition 3.3].

Proposition 4.1.1. — Let A1; : : : ; Am : Dm ! B(V ), where D is the open unit disc in C, be
analytic functions such that the operators zi @

@zi
�Ai(z) pairwise commute. Assume that for every i

the operator Ai(0) has no eigenvalues that differ by a nonzero integer. Then the system of equations

xi
@G

@xi
= Ai(x)G(x); 1 � i � m;

has a unique solution G(x) 2 B(V ) on (0; 1)m such that G(x)x
�A1(0)
1 : : : x

�Am(0)
m extends to

an analytic function on Dm with value 1 at x = 0.

Note that by assumption the operators Ai(0) pairwise commute. Observe also that
since G(0) = 1 is invertible, the operator G(z) is invertible for every z 2 Dm .

Apply the above proposition to Equation (4.1.2). Assume that neither A nor B has
eigenvalues that differ by a nonzero integer. Then there is a unique B(V )-valued solu-
tion G0(x) of (4.1.2) on the interval (0; 1) such that G0(x)x�A extends to a holomor-
phic function on D with value 1 at 0. Using the change of variables z 7! 1 � z we
similarly conclude that there is a unique B(V )-valued solution G1 of (4.1.2) on (0; 1)

such that G1(1� x)x�B extends to a holomorphic function on D with value 1 at 0.
Fix x0 2 (0; 1). If w0 2 V , then G0(x)w0 is a solution of (4.1.2) with initial

value G0(x0)w0 . If we continue it analytically along a loop 
0 of the form

•==• •
0 x0 1

ww

then at the end point we get G0(x0)e2�iAw0 . Thus the monodromy operator defined
by 
0 is G0(x0)e2�iAG0(x0)�1 . Similarly, the monodromy operator defined by a loop 
1

of the form

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



126 CHAPTER 4. DRINFELD TWISTS

• ww• •
0 x0 1

is G1(x0)e2�iBG1(x0)�1 . The fundamental group of C n f0; 1g with the base point x0 is
freely generated by the classes [
0] and [
1] of 
0 and 
1 . Therefore the monodromy
representation defined by Equation (4.1.2) with the base point x0 is

[
0] 7! G0(x0)e2�iAG0(x0)�1; [
1] 7! G1(x0)e2�iBG1(x0)�1:

This motivates introduction of the operator �(A; B) = G1(x)�1G0(x). It does not
depend on x, since a solution of (4.1.2) is determined by its initial value. We then see
that the above representation of �1(C n f0; 1g) is equivalent to the representation

[
0] 7! e2�iA; [
1] 7! �(A; B)�1e2�iB�(A; B):

Note that we get something interesting only when A and B do not commute, since if
they do commute, then G0(x) = G1(x) = xA(1� x)B and �(A; B) = 1.

The operator �(A; B) should be thought of as a normalized monodromy of (4.1.2)
along the straight line from 0 to 1. Specifically, for a 2 (0; 1) let Ga be the unique
B(V )-valued solution of (4.1.2) on (0; 1) such that Ga(a) = 1. By definition the oper-
ator Ga(b) is the monodromy from a to b.

Lemma 4.1.2. — Assume V is a Hilbert space and the operators A and B are skew-adjoint.
Then

�(A; B) = lim
a#0

a�BGa(1� a)aA:

In particular, the operator �(A; B) is unitary.

Proof. — Since a solution of (4.1.2) is determined by its initial value, we have Ga(x) =

G0(x)G0(a)�1 . Hence

a�BGa(1� a)aA = a�BG0(1� a)G0(a)�1aA

= a�BG1(1� a)�(A; B)G0(a)�1aA:

Note next that since aB is unitary for all a 2 (0; 1), we have

lim
a#0

a�BG1(1� a) = lim
a#0

a�B(G1(1� a)a�B)aB = lim
a#0

a�BaB = 1:

Similarly a�AG0(a) ! 1. This proves the first statement in the formulation of the
lemma. For the second one observe that since Ga is an integral curve of a time-
dependent vector field on the unitary group, the operator Ga(x) is unitary for all
x 2 (0; 1).
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Note that under the assumptions of the lemma the operators G0(x) and G1(x) are
unitary as well, since, for example,

G0(x) = Ga(x)G0(a) = Ga(x)(G0(a)a�A)aA;

and the last operator is close to the unitary operator Ga(x)aA if a is sufficiently small.

For arbitrary A and B the operator �(~A; ~B) is well-defined at least for all ~ 2 C
outside the discrete set � of numbers n=(� � �), where n is a nonzero integer and
� and � are different eigenvalues either of A or of B . It can happen that �(~A; ~B)

is well-defined on a larger set. For example, if V decomposes into a direct sum of two
A-and B -invariant subspaces V1 and V2 , then it suffices to require ~ 6= n=(���), where
� and � are different eigenvalues of AjVi or of BjVi .

Using the analyticity of solutions of differential equations with analytic coefficients
it is easy to show that �(~A; ~B) depends analytically on ~ 2 C n �. It can further be
shown that the first terms of the Taylor series of �(~A; ~B) at zero have the form

�(~A; ~B) = 1� ~2�(2)[A; B]� ~3�(3)([A; [A; B]] + [B; [A; B]]) + : : : ;

where � is the Riemann zeta function.

Returning to the KZ equations, note that the operator t is self-adjoint, so its spec-
trum consists of real numbers. Hence the operator �(~t12; ~t23) on V1 
 V2 
 V3 is
well-defined for all ~ outside a discrete subset of R� . Since this is true for all V1; V2; V3 ,
we get a well-defined element of U (G3) for all ~ outside a countable subset of R� .
This element is invariant, since t12 and t23 are invariant. If our fixed invariant form
is standardly normalized, then the spectrum of t consists of rational numbers, so
�(~t12; ~t23) 2 U (G3) is well-defined for all ~ 2 C n Q� . If ~ 2 iR, then �(~t12; ~t23)

is unitary.
The elements �(~t12; ~t23), when they are defined, completely describe the mon-

odromy of the KZ3 equations. Namely, assume V is a finite dimensional g-module and
consider V 
3 -valued solutions of KZ3 . There exist two B(V 
3)-valued solutions W0

and W1 of KZ3 on fx1 < x2 < x3g of the form

Wi(x1; x2; x3) = (x3 � x1)~(t12+t23+t13)Gi

�
x2 � x1

x3 � x1

�
; i = 0; 1;

such that the functions G0(x)x�~t12 and G1(1 � x)x�~t23 extend to analytic functions
on the unit disc with value 1 at x = 0. From our discussion of monodromy of (4.1.2) it
is then not difficult to see that if we fix a base point z0 = (x0

1; x
0
2; x

0
3) with x0

1 < x0
2 < x0

3 ,
then the corresponding representation of the braid group is given by

g1 7! W0(z0)�12e
�i~t12W0(z0)�1; g2 7! W1(z0)�23e

�i~t23W1(z0)�1:

Conjugating by W0(z0)�1 we see that this representation is equivalent to

g1 7! �12e
�i~t12 ; g2 7! �(~t12; ~t23)�1�23e

�i~t23�(~t12; ~t23):
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This representation can be thought of as one corresponding to the base point at infin-
ity in the asymptotic zone x2 � x1 � x3 � x1 .

The elements �(~t12; ~t23) have the following remarkable property.

Theorem 4.1.3. — For ~ 2 C outside a countable subset of R� , the element �(~t12; ~t23) 2

U (G3) is a counital invariant dual 3-cocycle on G.

Proof. — We will only sketch a proof of this theorem, referring the reader to the orig-
inal paper of Drinfeld [28] or to [68] for (slightly) more details.

Recall from our discussion in Section 3.1 that the cocycle identity means that
�(~t12; ~t23) considered as a map (V1 
 V2) 
 V3 ! V1 
 (V2 
 V3) satisfies the pen-
tagon relation. Consider five solutions of KZ4 on fx1 < x2 < x3 < x4g corresponding
to the vertices of the pentagon diagram normalized in the asymptotic zones defined
by the following rule: if Vi and Vj are between parenthesis and Vk is outside, then
jxi � xj j � jxk � xij. Specifically, we consider solutions of the form

Wi = (x4 � x1)~TFi(u; v); 1 � i � 5;

where T = t12 + t13 + t14 + t23 + t24 + t34 and u and v are defined as follows:

((V1 
 V2)
 V3)
 V4 : u =
x2 � x1

x3 � x1
; v =

x3 � x1

x4 � x1
;

(V1 
 (V2 
 V3))
 V4 : u =
x3 � x2

x3 � x1
; v =

x3 � x1

x4 � x1
;

V1 
 ((V2 
 V3)
 V4) : u =
x3 � x2

x4 � x2
; v =

x4 � x2

x4 � x1
;

V1 
 (V2 
 (V3 
 V4)) : u =
x4 � x3

x4 � x2
; v =

x4 � x2

x4 � x1
;

(V1 
 V2)
 (V3 
 V4) : u =
x2 � x1

x4 � x1
; v =

x4 � x3

x4 � x1
:

The functions Fi are required to be solutions of appropriate equations such that their
behavior near zero is as described in Proposition 4.1.1. For example, F1 is the unique
solution of

(4.1.3)

8>>><>>>:
u
@F1

@u
= ~

�
t12 +

u

u� 1
t23 +

uv

uv � 1
t24

�
F1

v
@F1

@v
= ~

�
t12 + t13 + t23 +

uv

uv � 1
t24 +

v

v � 1
t34

�
F1

such that the function F1(u; v)u�~t12v�~(t12+t13+t23) extends to an analytic function in
a neighborhood of zero with value 1 at u = v = 0. Therefore in the asymptotic zone
x2 � x1 � x3 � x1 � x4 � x1 we have

W1 � (x2 � x1)~t12(x3 � x1)~(t13+t23)(x4 � x1)~(t14+t24+t34):

COURS SPÉCIALISÉS 20



4.1. DRINFELD CATEGORY 129

These five solutions are related by the identities

W1 = W2(�
 1); W2 = W3(1
 �̂
 1)(�); W3 = W4(1
�);

W4 = W5(1
 1
 �̂)(�)�1; W5 = W1(�̂
 1
 1)(�)�1;

where � = �(~t12; ~t23), from which the cocycle identity immediately follows. Let us
for example check the first equality W1 = W2(�
 1).

The function F2 is the unique solution of

(4.1.4)

8>>>><>>>>:
u
@F2

@u
= ~

�
t23 +

u

u� 1
t12 +

uv

1� v + uv
t24

�
F2

v
@F2

@v
= ~

�
t12 + t13 + t23 +

uv � v

1� v + uv
t24 +

v

1� v
t34

�
F2

such that the function F2(u; v)u�~t23v�~(t12+t13+t23) extends to an analytic function in
a neighborhood of zero with value 1 at u = v = 0.

We have W1 = W2� for some �. Then

F1(u; v) = F2(1� u; v)�:

For u 2 (0; 1) fixed, the functions

v 7! F1(u; v)v�~(t12+t13+t23); v 7! F2(1� u; v)v�~(t12+t13+t23)

extend analytically to a neighbourhood of zero. Hence the function

v 7! v~(t12+t13+t23)�v�~(t12+t13+t23)

also extends analytically. Since the operator ~(t12 + t13 + t23) has no eigenvalues that
differ by a nonzero integer, one can easily check that this is possible only when � com-
mutes with ~(t12 + t13 + t23). It follows that if we put

gi(u) = Fi(u; v)v
~(t12+t13+t23) jv=0;

then g1(u)u�~t12 and g2(u)u�~t23 are analytic in a neighbourhood of zero, with value
1 at u = 0, and

g1(u) = g2(1� u)�:

The first equation in (4.1.3) implies that

u
dg1

du
= ~

�
t12 +

u

u� 1
t23

�
g1;

while the first equation in (4.1.4) implies that

u
dg2

du
= ~

�
t23 +

u

u� 1
t12

�
g2:

Hence � = �(~t12; ~t23) = �(~t12; ~t23)
 1 by definition of �(~t12; ~t23).
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The element �(~t12; ~t23) is called Drinfeld’s KZ-associator. It defines new associa-
tivity morphisms on the monoidal category RepG. Denote this new monoidal category
by D (g; ~). If ~ 2 iR, then �(~t12; ~t23) is unitary, so D (g; ~) is a C� -tensor category.

Theorem 4.1.4. — The operator � = �e�i~t defines a braiding on D (g; ~).

Proof. — Let us sketch a proof of the commutativity of the first hexagon diagram, see
[27] or [68] for more details. Consider six solutions Wi , 1 � i � 6, of KZ3 in the simply
connected region � = f(z1; z2; z3) 2 Y3 j =z1 � =z2 � =z3g normalized in the real
asymptotic zones corresponding to the vertices of the hexagon diagram according to
the following rule:

(V1 
 V2)
 V3 : x1 < x2 < x3; x2 � x1 � x3 � x1;

V1 
 (V2 
 V3) : x1 < x2 < x3; x3 � x2 � x3 � x1;

V1 
 (V3 
 V2) : x1 < x3 < x2; x2 � x3 � x2 � x1;

(V1 
 V3)
 V2 : x1 < x3 < x2; x3 � x1 � x2 � x1;

(V3 
 V1)
 V2 : x3 < x1 < x2; x1 � x3 � x2 � x3;

V3 
 (V1 
 V2) : x3 < x1 < x2; x2 � x1 � x2 � x3:

For example, W4 is the solution obtained by the analytic continuation to � of the so-
lution of the form

(x2 � x1)~(t12+t23+t13)F4

�
x3 � x1

x2 � x1

�
on fx1 < x3 < x2g such that F4(x)x�~t13 extends to an analytic function in the unit
disc with value 1 at x = 0.

We claim that these six solutions are related by the identities

W1 = W2�; W2 = W3e
�i~t23 ; W3 = W4��1

132;

W4 = W5e
�i~t13 ; W5 = W6�312; W6 = W1e

��i~(t13+t23);

where � = �(~t12; ~t23). This gives

e��i~(t13+t23)�312e
�i~t13��1

132e
�i~t23� = 1;

which is exactly the first hexagon identity.
The above identities involving � are immediate by definition. Among the remain-

ing three identities let us, for example, check that W4 = W5e
�i~t13 . In the connected

component of

f(z1; z2; z3) 2 � : jz1 � z3j < jz1 � z2j; jz1 � z3j < jz2 � z3jg

that intersects fx1 < x3 < x2g and fx3 < x1 < x2g we asymptotically have

W4 � (z3 � z1)~t13(z2 � z1)~(t12+t23)
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and
W5 � (z1 � z3)~t13(z2 � z3)~(t12+t23) � (z1 � z3)~t13(z2 � z1)~(t12+t23):

Here (z3� z1)~t13 is obtained by analytic continuation from fx1 < x3 < x2g to �, while
(z1 � z3)~t13 is obtained by analytic continuation from fx3 < x1 < x2g. Hence

(z3 � z1)~t13 = (z1 � z3)~t13e�i~t13 :

Since W4 = W5� for some �, we can therefore conclude that � = e�i~t13 .

The second hexagon identity follows from the first one thanks to the identity ��1 =

�321 , which follows from �(A; B)�1 = �(B; A), which in turn is easily checked by def-
inition using the change of variables z 7! 1� z in (4.1.2).

Therefore for all ~ 2 C outside a countable subset of R� (more precisely, for all
~ =2 [iQ�d�1

i , in particular, for all ~ =2 Q� when our fixed ad-invariant form is stan-
dardly normalized) we get a braided monoidal category D (g; ~) of finite dimensional
g-modules with associativity morphisms �(~t12; ~t23) and braiding �e�i~t . It is called
the Drinfeld category. If ~ 2 iR, then this is a braided C� -tensor category with self-
adjoint braiding.

References. — [2], [27], [28], [30], [48], [52], [68].

4.2. EQUIVALENCE OF TENSOR CATEGORIES

The aim of this section is to sketch a proof of the following fundamental result, due
to Drinfeld in the formal deformation setting and to Kazhdan and Lusztig in the ana-
lytic case.

Theorem 4.2.1. — Assume ~ 2 iR and let q = e�i~ . Then there exists a braided unitary
monoidal equivalence between the Drinfeld category D (g; ~) and the category Cq(g) that maps
an irreducible g-module with highest weight � onto an irreducible Uqg-module with highest
weight �.

Without the unitarity condition the result is true for all ~ =2 [iQ�d�1
i , but since we

prefer to consider only C� -tensor categories, we concentrate on the case ~ 2 iR.

Let us explain the idea of the proof. We will use super- and subscript q for every-
thing related to Cq(g). We have to construct a fiber functor on D (g; ~) whose endo-
morphism ring contains Uqg. For this it is enough to construct a comonoid inD (g; ~),
or in a larger category, and an action of (Uqg)

op on it. In Section 3.3 we defined such
a comonoid in pro-Cq(g). Its construction used certain morphisms V

q
� ! V

q
� 
 V

q
� ,

which were uniquely defined, up to scalar factors, by the fusion rules. If the theorem is
true, there exists a similar comonoid in pro-D (g; ~) defined using properly normal-
ized morphisms V� ! V� 
 V� . Now the idea is to construct such a comonoid from
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scratch by repeating the construction of the Kazhdan-Lusztig comonoid and changing
the normalization of the structure maps when needed. Why such changes will be neces-
sary, is because the categoryD (g; ~) is nonstrict, and therefore taking tensor products
of our structure maps we have to take into account the associativity morphisms. The
point is that independently of how complicated at some points this might be, the con-
struction must work with suitable normalizations of the maps involved, if the theorem
is true.

Turning to the proof, let us say that a statement holds for generic ~ if it holds for all
except countably many ~. Our goal in this section is to show that D (g; ~) and Cq(g)
are braided monoidally equivalent for generic ~ 2 iR (in fact, for generic ~ 2 C). In
the next section we will show that the equivalence can be chosen to be unitary and we
will then extend the result to all ~ 2 iR.

Let V� be an irreducible g-module with highest weight � and a highest weight vector
�� . As in Section 3.3, consider morphisms

T�;� : V�+� ! V� 
 V�; ��+� 7! �� 
 ��;

�T�;� : �V�+� ! �V� 
 �V�; ���+� 7! ��� 
 ���;

S� : �V� 
 V� ! V0 = C; ��� 
 �� 7! 1:

We want to define morphisms

�V�+� 
 V�+�+� ! �V� 
 V�+�

as suitably normalized compositions

�V�+� 
 V�+�+�

�T�;�
T�;�+�
�������! ( �V� 
 �V�)
 (V� 
 V�+�)

�1;2;34
����! �V� 
 ( �V� 
 (V� 
 V�+�))

�
��1

����! �V� 
 (( �V� 
 V�)
 V�+�)

�
S�
�
����! �V� 
 V�+�;

where � = �(~t12; ~t23). Note that instead of (�
��1)�1;2;34 we could also use (�


�)��1
12;3;4 , but the result would be the same by the pentagon relation. The above mor-

phisms should at least form a projective system.

Lemma 4.2.2. — Denote by g~(�; �) the image of ���+� 
 ��+� under the composition

�V�+� 
 V�+�

�T�;�
T�;�
�����! �V� 
 �V� 
 V� 
 V�

(�
S�
�)B
������! �V� 
 V�

S�
�! C;

where B = (� 
 ��1)�1;2;34 . Then for generic ~ the map (�; �) 7! g~(�; �) is a C� -valued
symmetric 2-cocycle on P+ .
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Proof. — As g~(�; �) is analytic in ~ outside a discrete set and g0(�; �) = 1, we con-
clude that g~(�; �) 6= 0 for generic ~.

To prove that g~(�; �) is a symmetric cocycle we will use two identities. The first is

�(T�;� 
 �)T�+�;� = (�
 T�;�)T�;�+�:

To show this it suffices to check how both sides act on the highest weight vector ��+�+� .
But then this identity is immediate, since �� 
 �� 
 �� is an eigenvector for t12 and t23

and hence � acts trivially on it. The second identity is

�T�;� = q(�;�)T�;�;

which is again straightforward to check by looking at how both sides act on ��+� ; recall
that � = �qt = �e�i~t .

Now in order to simplify computations let us consider a strict braided monoidal cat-
egory equivalent to D (g; ~), which exists by Mac Lane’s theorem. We continue to use
the same symbols T�;� and S� for morphisms in this new category. We then have

(T�;� 
 �)T�+�;� = (�
 T�;�)T�;�+� and �T�;� = q(�;�)T�;�;

while g~(�; �) is defined by the identity

g~(�; �)S�+� = S�(�
 S� 
 �)( �T�;� 
 T�;�):

We have

S�(�
 S� 
 �)(�
 �
 S� 
 �
 �)(�
 �T�;� 
 T�;� 
 �)( �T�;�+� 
 T�+�;�)

= g~(�; �)S�(�
 S�+� 
 �)( �T�;�+� 
 T�+�;�)

= g~(�; �)g~(�; � + �)S�+�+�:

On the other hand, the same expression equals

S�(�
 S� 
 �)(�
 �
 S� 
 �
 �)( �T�;� 
 �
 �
 T�;�)( �T�+�;� 
 T�;�+�)

= S�(�
 S� 
 �)( �T�;� 
 T�;�)(�
 S� 
 �)( �T�+�;� 
 T�;�+�)

= g~(�; �)g~(� + �; �)S�+�+�:

This proves the cocycle identity

g~(�; �)g~(� + �; �) = g~(�; �)g~(�; � + �):

It remains to show that g~(�; �) = g~(�; �). By the hexagon identities �12;3 = (�


�)(�
 �) and ��1
1;23 = (��1 
 �)(�
 ��1) we have

��1 
 � = (��1
1;23 
 �)(�
 �12;3):
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Using this and the identity �T�;� = q(�;�)T�;� we compute:

g~(�; �)S�+� = S�(�
 S� 
 �)(��1
1;23 
 �)(�
 �12;3)( �T�;� 
 T�;�)

= S�(S� 
 �
 �)(�
 �12;3)( �T�;� 
 T�;�)

= S�(�
 �
 S�)(�
 �12;3)( �T�;� 
 T�;�)

= S�(�
 S� 
 �)( �T�;� 
 T�;�)

= g~(�; �)S�+�:

Hence g~(�; �) = g~(�; �).

By Lemma 3.4.5 for generic ~ the cocycle g~(�; �) is a coboundary, so we can write
g~(�; �) = g~(� + �)g~(�)�1g~(�)�1 . Furthermore, the values g~(!i) 2 C� can be
chosen arbitrary and they completely determine g~(�). We make such a choice so
that g~(!i) depends analytically on ~ and g0(!i) = 1. In this case, for every � 2 P+ ,
the function ~ 7! g~(�) extends to an analytic function on C excluding a closed
discrete subset. Put

S~� = g~(�)S�

and define

tr
�;~
�;�+� : �V�+� 
 V�+�+� ! �V� 
 V�+�

as the composition

�V�+� 
 V�+�+�

�T�;�
T�;�+�
�������! ( �V� 
 �V�)
 (V� 
 V�+�)

(�
S~�
�)B
������! �V� 
 V�+�

where B = (�
��1)�1;2;34 . By the choice of g~(�) the morphisms tr
�;~
�;� form a projec-

tive system. It is easy to check that the same is true for the morphisms tr
�;~
�;�+� for every

� 2 P . Therefore similarly to Section 3.3 we can define pro-objects

M~
� = f �V� 
 V�+�g� and M~ = f��2X

�V� 
 V�+�gX;�

in pro-D (g; ~). They are defined for generic ~. For ~ = 0 these are the pro-objects M�

and M from Section 3.3 in the case q = 1.

Lemma 4.2.3. — For generic ~ and any � 2 P the pro-object M~
� considered as a pro-object

of D (g; 0) = C1(g) is isomorphic to M� .

Proof. — Note that the maps tr
�;~
�;�+� are surjective for generic ~, since this is true

for ~ = 0, and for fixed �, � and � they are analytic in ~ outside a closed discrete
subset of C. For every such ~ fix a regular weight � 2 P+ (that is, �(i) > 0 for all i)
such that � + � 2 P+ . Then inductively define isomorphisms

fn : �Vn� 
 V�+n� ! �Vn� 
 V�+n�
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such that f1 = � and the diagrams

�Vn� 
 V�+n�
tr~ //

fn o

��

�V(n�1)� 
 V�+(n�1)�

fn�1o

��
�Vn� 
 V�+n� tr

// �V(n�1)� 
 V�+(n�1)�

commute. Such morphisms are easy to find using right inverses to tr and tr~ . They
define the required isomorphism M~

� ! M� .

Since M represents the forgetful functor, we therefore see that for generic ~ the
functor F ~ = Hom(M~; �) on D (g; ~) is isomorphic to the forgetful functor, so
that dim F ~(V ) = dim V . The main point of using M~ is that it has a structure of a
comonoid and therefore F ~ becomes a tensor functor. Namely, define

�~�1;�2
: M~

�1+�2
! M~

�1

M~

�2

using morphisms m~
�1;�2;�1;�2

given as the compositions

�V�1+�2 
 V�1+�2+�1+�2

�T�1 ;�2

T�1+�1 ;�2+�2

������������! ( �V�1 

�V�2)
 (V�1+�1


 V�2+�2
)

q(�1+�1 ;�2)B�1(�
�
�)B
��������������! ( �V�1 
 V�1+�1

)
 ( �V�2 
 V�2+�2
);

where B = (�
 ��1)�1;2;34 . We remark that it does require some effort to prove that
m~ are compatible with tr~ and so define a morphism of pro-objects. They also define
a morphism �~ : M~ ! M~ 
M~ that can be thought of as

P
�1;�2

��1;�2
.

Let also "~ : M~ ! V0 = C be the morphism defined by the morphisms

S~� : �V� 
 V� ! C:

Lemma 4.2.4. — The triple (M~; �~; "~) is a comonoid in pro-D (g; ~).

Proof. — Let us only check the coassociativity of �~ . For this it suffices to show that

�(�~�1;�2

 �)�~�1+�2;�3

= (�
 �~�2;�3
)�~�1;�2+�3

:

As in the proof of Lemma 4.2.2 let us strictify the category D (g; ~). In the new strict
category it suffices to check that

(�
 �
 �
 �)( �T 
 T 
 �
 �)(�
 �
 �)( �T 
 T )

= (�
 �
 �
 �
 �)(�
 �
 �T 
 T )(�
 �
 �)( �T 
 T )

as morphisms

�V�1+�2+�3 
 V�1+�2+�3+�1+�2+�3
! �V�1 
 V�1+�1


 �V�2 
 V�2+�2

 �V�3 
 V�3+�3

;
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where we omitted the subindices of T and �T , as there is only one choice making the
above identity meaningful. The left hand side of that identity is equal to

(�
 �
 �
 �
 �)(�
 �
 �1;23 
 �)( �T 
 �
 T 
 �)( �T 
 T );

whereas the right hand side is equal to

(�
 �
 �
 �
 �)(�
 �12;3 
 �
 �)(�
 �T 
 �
 T )( �T 
 T ):

As ( �T 
 �) �T = (�
 �T ) �T and (T 
 �)T = (�
 T )T , we therefore only have to check that

(�
 �
 �)(�
 �1;23) = (�12;3 
 �)(�
 �
 �):

But this is immediate from the hexagon identities �1;23 = (� 
 �)(� 
 �) and �12;3 =

(�
 �)(�
 �).

We can therefore define natural maps

F ~
2 (U; V ) : F ~(U)
 F ~(V )! F ~(U 
 V ); f 
 g 7! (f 
 g)�~;

which would make F ~ a tensor functor provided they were isomorphisms.

Lemma 4.2.5. — For generic ~ the maps F ~
2 (U; V ) are isomorphisms for any finite dimensional

g-modules U and V .

Proof. — It suffices to check that for all sufficiently large �1; �2 the mapM
�1;�2

Hom( �V�1 
 V�1+�1
; U)
Hom( �V�2 
 V�2+�2

; V )

! Hom( �V�1+�2 
 V�+�1+�2
; U 
 V ); f 
 g 7! (f 
 g)m~;

where the summation is over weights �1 of U and weights �2 of V , is an isomorphism
for generic ~. This is indeed the case, since this map is an isomorphism for ~ = 0 by
results of Section 3.3 (for q = 1), and it is analytic in ~ outside a closed discrete set.

Let us summarize what we have proved so far.

Proposition 4.2.6. — For generic ~ the functor F ~ = Hom(M~; �) is a fiber functor
on D (g; ~) such that dim F h(V ) = dim V for any finite dimensional g-module V .

Observe that this did not require much information about �(~t12; ~t23). Namely,
the only properties that we used were that �(~t12; ~t23) jV�
V�
V� is analytic outside a
closed discrete set, with value 1 at ~ = 0, and that �(~t12; ~t23) acts trivially on �� 


�� 
 �� .

We next want to define an action of Uqg on F ~ . We proceed as in Section 3.3, but
will be more sketchy, referring the reader to the paper by Kazhdan and Lusztig [49] or
to [68] for details.
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We want to define an action of (Uqg)
op on M~ . Recalling how it was done in the

proof of Theorem 3.3.7, we use the morphisms

�i;�;� : V�+���i ! V� 
 V�; ��+���i 7! �(i)�� 
 Fi�� � �(i)Fi�� 
 ��

and then attempt to define morphisms ~Fi : M
~
� ! M~

�+�i
using suitably normalized

compositions

(4.2.1) �V�+� 
 V�+�+�

[�(i)]�1
qi

�T�;�
�i;�;�+�i+�
��������������! ( �V� 
 �V�)
 (V� 
 V�+�i+�)

(�
S~�
�)B
������! �V� 
 V�+�i+�;

where B = (�
 ��1)�1;2;34 . Trying to check when such normalizations become com-
patible with tr~ one quickly realizes that one needs a relation between the morphisms
�(T
�)�i and (�
T )�i . Equations (3.4.1)-(3.4.2) show what we should expect. Namely,
it is not difficult to see that if the theorem holds, then there must exist normalizations
�~i of �i such that

(4.2.2) [�(i)]qi�(T�;� 
 �)�~i;�+�;� � [�(i)]qi�(�~i;�;� 
 �)T�+���i;�

= [�(i) + �(i)]qi(�
 �~i;�;�)T�;�+���i ;

(4.2.3) [�(i)]qi(�
 T�;�)�
~
i;�;�+� � [�(i)]qi(�
 �~i;�;�)T�;�+���i

= [�(i) + �(i)]qi�(�~i;�;� 
 �)T�+���i;�:

In order to find these normalizations we have to compute the action of � on the two-
dimensional space of highest weight vectors in the isotypic component of V�
 V�
 V�
corresponding to the weight � + � + � � �i . Thus we have to compute �(A; B) for
two-by-two matrices A and B . In this case solutions of the equation

w0 =

�
A

x
+

B

x� 1

�
w

can be written in terms of the Euler-Gauss hypergeometric function 2F1(�; �; 
; x),
which is the unique solution of

x(1� x)u00 + (
� (� + � + 1)x)u0 � ��u = 0

that is analytic in a neighborhood of 0 and equals 1 at x = 0. Using known relations
for the hypergeometric function it can then be shown that identities (4.2.2)-(4.2.3) are
indeed satisfied with

�~i;�;� =
�i;�;�

�(1 + ~di�(i))�(1 + ~di�(i))�(1� ~di(�(i) + �(i)))
:

This is essentially the only part of the proof, for which we need to know how
�(~t12; ~t23) is defined.
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Using (4.2.2)-(4.2.3) and working in a strictified category of D (g; ~) one can then
check that compositions (4.2.1), with �i replaced by �~i , define morphisms ~Fi : M

~
� !

M~
�+�i

. These morphisms define a morphism M~ ! M~ , which we continue to denote

by ~Fi . Similarly we define ~Ei : M
~ ! M~ , see the proof of Theorem 3.3.7, as well as

morphisms ~Ki that act on M~
� as the scalars q�(i)

i . It is then not difficult to prove the
following.

Proposition 4.2.7. — The endomorphisms ~Ei , ~Fi and ~Ki of M~ satisfy the relations

~Ej ~Ki = q
aij
i

~Ki
~Ej ; ~Fj ~Ki = q

�aij
i

~Ki
~Fj ;

~Fj ~Ei � ~Ei ~Fj = �ijfi(~)
~Ki � ~K�1

i

qi � q�1
i

;

where fi(~) is defined by the identity

S~!i
(�
 S~!i


 �)(�
��1)�1;2;34(��~i;!i;!i

 �~i;!i;!i

) = �[2]qifi(~)S~2!i��i
:

In particular, fi is analytic outside a closed discrete set, and fi(0) = 1.

In order to define an action of (Uqg)
op on M~ one has to prove more complicated

relations for ~Ei and ~Fi . As we will see shortly, fortunately, this is not needed to finish
the proof of the theorem.

Proof of Theorem 4.2.1 for generic ~. — We already know that for generic ~ the functor
F ~ = Hom(M~; �) is a fiber functor such that dim F ~(V ) = dim V . If in addition
fi(~) 6= 0, where fi is from the previous proposition, we define an action of Uqg

on F ~(V ) by

E
q
i f = fi(~)�1f ~Ei; F

q
i f = f ~Fi; K

q
i f = f ~Ki:

In order to check that this is indeed an action for generic ~, we have to show that the
element

G
q
ij =

1�aijX
k=0

(�1)k
"

1� aij

k

#
qi

(E
q
i )

kE
q
j (E

q
i )

1�aij�k;

as well as the similar element for F q
i , is zero. It suffices to check how G

q
ij acts on F ~(V�)

for every � 2 P+ .
The morphisms tr

�;~
0;� : �V� 
 V�+� ! V0 
 V� = V� define a morphism �~� : M~ ! V� ,

that is, a vector in F ~(V�). We have E
q
i �

~
� = 0, as there are no nonzero morphisms

�V� 
 V�+�i+� ! V� . In particular, Gqij�
~
� = 0. Using the relations E

q
kF

q
l � F

q
l E

q
k =

�kl(K
q
k � (K

q
k)
�1)=(qk � q�1

k ), Kq
kE

q
l = qaklk E

q
l K

q
k and K

q
kF

q
l = q�aklk F

q
l K

q
k it can be easily

checked that Gqij commutes with F
q
l for all l . Therefore to prove that Gqij = 0 on F ~(V�)

it suffices to show that F ~(V�) is spanned by vectors F q
i1
: : : F

q
im
�~� . For this choose a finite

set I of multi-indices (i1; : : : ; im) such that the vectors Fi1 : : : Fim�� form a basis in V� .
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Since dim F ~(V�) = dim V� , it then suffices to check that for generic ~ the vectors
F
q
i1
: : : F

q
im
�~� are linearly independent. But these vectors are defined by morphisms

�V� 
 V���i1������im+� ! V�:

Therefore it suffices to check that these morphisms are linearly independent for
generic ~. Since this is true for ~ = 0, this is indeed the case by analyticity.

Thus for generic ~ the functor F ~ can be considered as a functor fromD (g; ~) into
Cq(g). Furthermore, from the above argument we see that for generic ~ the module
F ~(V�) has a nonzero vector of weight � killed by Eq

i , so V
q
� embeds into F ~(V�). Since

dim V
q
� = dim V� = dimF ~(V�), we conclude that F ~(V�) is an irreducible Uqg-module

with highest weight �. It follows that F ~ is an equivalence of categories.

It remains to check that F ~ is a braided monoidal equivalence, that is, it respects the
braiding and F ~

2 (U; V ) is a morphism of Uqg-modules. For the first property, in view of
Definition (2.6.1) of the R-matrix for Uqg, it suffices to show that

�(��~� 
 �~�)�~ = q�(�;�)(�~� 
 ��~�)�
~

as morphisms M~ ! V� 
 �V� , where ��~� 2 F ~( �V�) is the lowest weight vector defined

using the morphisms tr
�;~
�;0 : �V�+� 
 V� ! �V� 
 V0 = �V� . This is more or less immediate

by definition of �~ . For the second property it suffices to check that

�~ ~Ei = ( ~Ei 
 � + ~Ki 
 ~Ei)�
~ and �~ ~Fi = ( ~Fi 
 ~K�1

i + �
 ~Fi)�
~:

We omit this computation, which is again based on (4.2.2)-(4.2.3).

References. — [27], [28], [33], [49], [68].

4.3. DRINFELD TWISTS

Existence of an equivalence of categories D (g; ~) and Cq(g) (~ 2 iR and q = e�i~)
can be reformulated in more concrete terms as follows. Recall that by Lemma 3.2.4
there exists an isomorphism ' : U (Gq) ! U (G) extending the canonical identifica-
tion of the centers.

Theorem 4.3.1. — The categories D (g; ~) and Cq(g) are braided monoidally equivalent,
with the equivalence mapping an irreducible g-module with highest weight � onto an irre-
ducible Uqg-module with highest weight �, if and only if there exists an invertible element
F 2 U (G� G) such that

(i) ('
 ')�̂q =F �̂'(�)F �1 ;

(ii) ("̂
 �)(F ) = (�
 "̂)(F ) = 1;

(iii)('
 ')(Rq) =F21q
tF �1 ;
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(iv) (�
 �̂)(F �1)(1
F �1)(F 
 1)(�̂
 �)(F ) = �(~t12; ~t23).

Furthermore, assuming that ' is a �-isomorphism, the equivalence can be chosen to be unitary
if and only if the element F can be chosen to be unitary.

Proof. — Assume we have a braided equivalence F as in the formulation. We may as-
sume that F (V�) = V

q
� . Choose linear isomorphisms �V� : V� ! V

q
� that implement the

isomorphism ' : U (Gq) ! U (G); for � = 0 we take �V0
= F0 . The isomorphisms �V�

define natural isomorphisms �U : U ! F (U) for finite dimensional g-modules U , and
we have !�U = �U'(!) for all ! 2 U (Gq).

Let F 2 U (G� G) be the element defined by requiring commutativity of the dia-
grams

U 
 V
F �1

//

�
�

��

U 
 V

�

��
F (U)
 F (V )

F2

// F (U 
 V ):

In other words, F acts on U
V as (��1
U 
�

�1
V )F2(U; V )�1�U
V . For every ! 2 U (Gq)

we then have the following identities for the maps U 
 V ! F (U 
 V ):

F2(�
 �)('
 ')�̂q(!) = F2�̂q(!)(�
 �) = !F2(�
 �)

and

(�F �1)(F �̂'(!)F �1) = !�F �1:

Since F2(�
 �) = �F �1 , it follows that ('
 ')�̂q(!) =F �̂'(!)F �1 .

Property (ii) follows easily by definition, using that �V0
= F0 .

Turning to property (iii), we have the commutative diagram

U 
 V

�qt

��

� // F (U 
 V )

F (�qt)

��

F�1
2 // F (U)
 F (V )

�Rq

��

��1
��1

// U 
 V

�('
')(Rq)

��
V 
 U

� // F (V 
 U)
F�1

2 // F (V )
 F (U)
��1
��1

// V 
 U:

Therefore �('
 ')(Rq) =F �qtF �1 , that is, ('
 ')(Rq) =F21q
tF �1 .

Finally, we also have the commutative diagrams

(F (U)
 F (V ))
 F (W )

�

��

F2
� // F (U 
 V )
 F (W )
F2 // F ((U 
 V )
W )

F (�)

��
F (U)
 (F (V )
 F (W ))

�
F2 // F (U)
 F (V 
W )
F2 // F (U 
 (V 
W ));
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where � = �(~t12; ~t23). Using that F2 = �F �1(��1 
 ��1) we get

F (�) = �(�
 �̂)(F �1)(1
F �1)(F 
 1)(�̂
 �)(F )��1:

As ��1F (�)� = � by naturality of �, this is exactly property (iv).

If in addition F was unitary and ' was a �-isomorphism, we could choose �V� to be
unitary, and then F would be unitary as well.

Conversely, assume we are givenF with properties (i)-(iv). Using ' we can consider
any g-module as a Uqg-module, so we have a functor F : D (g; ~) ! Cq(g). We make
it a tensor functor by letting F0 = � and F2 =F �1 . It is easy to check that F becomes
a braided monoidal equivalence.

Note that by Lemma 3.2.4 we already know that there exists F 2 U (G � G) with
property (i). Property (ii) is a simple normalization condition. The existence of F
with property (iii) is also not difficult to show using Equation (2.6.6) for the R-matrix
and the identity

t =
1

2
(�̂(C)� 1
 C � C 
 1);

where C 2 Ug is the Casimir operator. Therefore the crucial property is number (iv).

Definition 4.3.2. — An invertible element F 2 U (G � G) with properties (i)-(iv)
from Theorem 4.3.1 is called a Drinfeld twist for Gq corresponding to the isomor-
phism ' : U (Gq)! U (G).

Therefore the main result of the previous section can be formulated by saying that
for generic q > 0 there exists a Drinfeld twist for Gq .

Lemma 4.3.3. — If the isomorphism ' : U (Gq) ! U (G) is �-preserving and there exists a
Drinfeld twist E corresponding to ', then the unitary F in the polar decomposition E =

F jE j is a unitary Drinfeld twist corresponding to '.

Proof. — Indeed, since �̂q , �̂ and ' are �-homomorphisms, condition (i) on E im-
plies that

E �̂'(�)E �1 = (E �1)��̂'(�)E �;

that is, the element E �E 2 U (G�G) is invariant. It follows that jE j is also invariant.
Hence

E �̂'(�)E �1 =F jE j�̂'(�)jE j�1F �1 =F �̂'(�)F �1;

so condition (i) for F is satisfied. Condition (ii) is also obviously satisfied. Turning to
(iii), recall that the R-matrix has the property R �

q = (Rq)21 . So applying the �-oper-
ation and then the flip to the identity ('
 ')(Rq) = E21q

tE �1 we get

('
 ')(Rq) = (E �1)�21q
tE �:
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Therefore (E �E )21q
t = qtE �E and hence jE j21q

t = qtjE j. It follows that

('
 ')(Rq) = E21q
tE �1 =F21jE j21q

tjE j�1F �1 =F21q
tF �1:

It remains to check (iv). As usual write � for �(~t12; ~t23). Consider the element

�0 = (�
 �̂)(F �1)(1
F �1)(F 
 1)(�̂
 �)(F ):

We have to show that �0 = �. Using that jE j is invariant one easily checks that

(4.3.1) � = (�
 �̂)(jE j�1)(1
 jE j�1)�0(jE j 
 1)(�̂
 �)(jE j):

Since �0 is defined by the unitary elementF , it is itself unitary. Since � is also unitary,
taking the inverses in the above identity and then applying the �-operation we get

� = (�
 �̂)(jE j)(1
 jE j)�0(jE j�1 
 1)(�̂
 �)(jE j�1):

Therefore

(�
 �̂)(jE j�1)(1
 jE j�1)�0(jE j 
 1)(�̂
 �)(jE j)

= (�
 �̂)(jE j)(1
 jE j)�0(jE j�1 
 1)(�̂
 �)(jE j�1):

Since jE j is invariant, the positive operators (�
�̂)(jE j) and 1
jE j, as well as jE j
1

and (�̂
 �)(jE j), commute. So we can write

�0((jE j 
 1)(�̂
 �)(jE j))2 = ((1
 jE j)(�
 �̂)(jE j))2�0:

Consequently

�0(jE j 
 1)(�̂
 �)(jE j) = (1
 jE j)(�
 �̂)(jE j)�0;

and returning to (4.3.1) we get � = �0 .

Thus for generic q > 0 there exists a unitary Drinfeld twist. In order to extend this
to all q > 0 we will study continuity properties of Drinfeld twists as functions of the
deformation parameter.

For every q > 0 choose a �-isomorphism 'q : U (Gq)! U (G) extending the canon-
ical identification of the centers. We say that the family f'qgq>0 is continuous, if the
elements 'q(E

q
i ), 'q(F q

i ) and 'q(Hi), 1 � i � r , depend continuously on q in the
weak� topology on U (G) = C[G]� ; recall that we consider the maximal torus T as
subset of U (Gq) such that Kq

i = qHi
i for q 6= 1.

Lemma 4.3.4. — A continuous family of �-isomorphisms 'q : U (Gq)! U (G) always exists.
Furthermore, we may assume that 'q is the identity map on T .

Proof. — It suffices to show that for every � 2 P+ there exist unitaries uq� : V
q
� ! V� that

map V
q
� (�) onto V�(�) and are such that the operators uq��

q
�(E

q
i )u

q
�
� and u

q
��

q
�(F

q
i )u

q
�
�

depend continuously on q . It is enough to show that such unitaries exist locally.
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Therefore fix � and q0 > 0. For every multi-index I = (i1; : : : ; ik) (1 � ij � r)
put eqI = F

q
i1
: : : F

q
ik
�
q
� 2 V

q
� : We can choose multi-indices I1; : : : ; In such that the vectors

e
q0
I1
; : : : ; e

q0
In

form a basis in V
q0
� . The relations in Uqg together with the identities F q

i
�

=

(K
q
i )
�1E

q
i imply that the scalar products (e

q
I ; e

q
J) depend continuously on q . Hence, for

some " > 0, the vectors eqI1 ; : : : ; e
q
In

form a basis in V
q
� for all q 2 (q0 � "; q0 + "). Apply-

ing the Gram-Schmidt orthogonalization we get an orthonormal basis �q1; : : : ; �
q
n in V

q
� .

Since the weight spaces are mutually orthogonal and the vectors eqI are weight vectors,
this basis consists of weight vectors. Let vq : V

q
� ! V

q0
� be the unitary mapping �

q
i into

�
q0
i . By construction it maps V q

� (�) onto V
q0
� (�). Furthermore, for every multi-index I ,

the coefficients of eqI in the basis �q1; : : : ; �
q
n depend continuously on q , hence the matrix

coefficients of �q�(F
q
i ) in this basis also depend continuously on q . It follows that the

operators vq�q�(F
q
i )vq� depend continuously on q . Since vq�

q
�(Hi)v

q� = �
q0
� (Hi) and

E
q
i = qdiHiF

q
i
� , the operators vq�q�(E

q
i )v

q� also depend continuously on q .
Now take an arbitrary unitary u : V

q0
� ! V� that maps V q0

� (�) onto V�(�). Then the
unitaries uq� = uvq , q 2 (q0 � "; q0 + "), have the required properties.

We can now easily finish the proof of Theorem 4.2.1.

Proposition 4.3.5. — Assume f'q : U (Gq) ! U (G)gq is a continuous family of �-isomor-
phisms. Then the set of pairs (q;F q), where F q is a unitary Drinfeld twist for Gq correspond-
ing to 'q , is closed in R�+ � U (G � G). In particular, for every q > 0 there exists a unitary
Drinfeld twist for Gq corresponding to 'q .

Proof. — By definition of the R-matrix Rq and the coproduct �̂q , it is easy to see that
the elements ('q 
 'q)(Rq) and ('q 
 'q)�̂q(X

q), where Xq = E
q
i ; F

q
i ; Hi , depend

continuously on q . This immediately gives the first statement in the formulation. Since
the set of unitary elements inU (G�G) is compact and we already know that for generic
q > 0 there exists a unitary Drinfeld twist for Gq , the second statement also follows.

As follows from Theorem 4.3.1, existence of a Drinfeld twist for Gq is independent
of the choice of an isomorphism U (Gq) �= U (G). Explicitly this can be seen as follows.
Assume ' and  are two isomorphisms U (Gq)! U (G) extending the canonical iden-
tification of the centers, and F is a Drinfeld twist corresponding to '. There exists an
invertible element u 2 U (G) such that  = (Ad u)' and "̂(u) = 1; furthermore, if '
and  are �-preserving, then u can be chosen to be unitary. Then one can easily check
that the element

(u
 u)F �̂(u)�1

is a Drinfeld twist corresponding to  .
In the case  = ' this clearly shows that a Drinfeld twist corresponding to a fixed iso-

morphism ' is not unique: for any invertible central element c 2 U (G) with "̂(c) = 1
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we get a new Drinfeld twist (c
c)F �̂(c)�1 . It turns out, this is the only way to construct
new Drinfeld twists.

Theorem 4.3.6. — Suppose F and F 0 are two Drinfeld twists for Gq corresponding to the
same isomorphism '. Then there exists an invertible central element c of U (G) such that F 0 =

(c
 c)F �̂(c)�1 . When ' is a �-isomorphism and both Drinfeld twists are unitary, then c can
also be chosen to be unitary.

Proof. — To simplify the notation we shall omit ' in the computations, so we identify
U (Gq) and U (G) as algebras. Set E =F 0F �1 . Then

(�
 �̂)(F �1)(1
F �1)(F 
 1)(�̂
 �)(F )

= (�
 �̂)(F �1E �1)(1
F �1E �1)(EF 
 1)(�̂
 �)(EF ):

Multiplying by (1 
F )(� 
 �̂)(F ) on the left and by (�̂ 
 �)(F �1)(F �1 
 1) on
the right, and using that F �̂(�)F �1 = �̂q , we get

1 = (�
 �̂q)(E �1)(1
 E �1)(E 
 1)(�̂q 
 �)(E ):

Therefore E is a dual 2-cocycle on Gq . Since

E �̂q(�)E
�1 = EF �̂(�)F �1E �1 =F 0�̂(�)F 0�1 = �̂q;

the cocycle E 2 U (Gq � Gq) is invariant, and since

E21RqE
�1 = E21F21q

tF �1E �1 =F 0
21q

tF 0�1 =Rq;

it is symmetric. By Corollary 3.4.12 there exists a central element c of U (Gq) = U (G)

that is unitary if E is unitary, such that

E = (c
 c)�̂q(c)
�1;

so that F 0 = (c
 c)�̂q(c
�1)F = (c
 c)F �̂(c�1).

Remark 4.3.7. — By Corollary 3.4.2, if g is simple and g 6�= so4n(C), then any invariant
dual 2-cocycle on Gq is a coboundary. The above proof then implies that for any such g
the condition (' 
 ')(Rq) = F21q

tF �1 follows from the other three conditions on
Drinfeld twists. It follows that any monoidal equivalence between D (g; ~) and Cq(g)
is automatically braided.

We can now prove the following strengthening of Proposition 4.3.5.

Theorem 4.3.8. — Assume f'q : U (Gq)! U (G)gq is a continuous family of �-isomorphisms
such that '1 = �. Then there exists a continuous family of unitary Drinfeld twists F q corre-
sponding to 'q such that F 1 = 1.

Furthermore, if f q : U (Gq)! U (G)gq>0 is another continuous family of �-isomorphisms
such that  1 = �, and fE qgq>0 is a corresponding continuous family of unitary Drinfeld twists
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with E 1 = 1, then there exists a unique continuous family of unitary elements uq 2 U (G) such
that

u1 = 1;  q = uq'q(�)uq� and E q = (uq 
 uq)F q�̂(uq)� for all q > 0:

Proof. — To prove the existence of Fq , consider the set 
 of pairs (q;F ), where q >

0 and F is a unitary Drinfeld twist for 'q . Let p : 
 ! R�+ be the projection onto
the first coordinate. The compact abelian group of elements of the form (c
 c)�̂(c)� ,
where c is a unitary element in the center of U (G), acts freely by multiplication on the
right on the locally compact space 
, and by Theorem 4.3.6 this action is transitive on
each fiber of the map p. Therefore if this group were a compact Lie group, then by a
theorem of Gleason [35], p : 
! R�+ would be a fiber bundle, hence p would have a
continuous section. Since the group of elements of the form (c 
 c)�̂(c)� is not a Lie
group, we cannot apply Gleason’s theorem directly and will proceed as follows.

Choose an increasing sequence of finite subsets Pn � P+ such that P1 = f0g and
[nPn = P+ . For every q > 0 we will construct a sequence of unitary Drinfeld twists F q

n

such that F 1
n = 1, the map q 7! (�� 
 ��)(F

q
n ) is continuous for all �; � 2 Pn and

n � 1, and (�� 
 ��)(F
q
n+1) = (�� 
 ��)(F

q
n ) for all �; � 2 Pn and n � 1. Then, for

every q > 0, the sequence fF q
n gn converges to a unitary Drinfeld twist F q with the

required properties.
For n = 1 and q 6= 1 we take F q

1 to be any unitary Drinfeld twist, and we take
F 1

1 = 1.
Assume the Drinfeld twistsF q

n are already constructed for some n. Denote by 
n+1

the set of pairs (q;W ), where W = (W�;�)�;� is a unitary element inY
(�;�)2Pn+1�Pn+1nPn�Pn

B(V� 
 V�)

such that there exists a unitary Drinfeld twist F for 'q satisfying

(�� 
 ��)(F ) = W�;� for all (�; �) 2 Pn+1 � Pn+1 n Pn � Pn;

(�� 
 ��)(F ) = (�� 
 ��)(F
q
n ) for all �; � 2 Pn:

Let pn+1 : 
n+1 ! R�+ be the projection onto the first coordinate. The set 
n+1 is a
closed subset of

R�+ �
Y

(�;�)2Pn+1�Pn+1nPn�Pn

U(V� 
 V�):

For every q > 0 the fiber p�1
n+1(q) is nonempty, since it contains the element

((�� 
 ��)(F
q
n ))�;�:

Let Sn+1 be the set of weights � 2 P+ such that either � 2 Pn+1 or V� is equivalent
to a subrepresentation of V�
V� for some �; � 2 Pn+1 . Put Kn+1 =

Q
�2Sn+1

T. We have
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a homomorphism

�n+1 : Kn+1 !
Y

(�;�)2Pn+1�Pn+1nPn�Pn

U(V� 
 V�)

such that �n+1(c) acts on the isotypic component of V� 
 V� of type V� as multiplica-
tion by c�c��c� . We also have a similar homomorphism �n+1 from Kn+1 into the unitary
group of

Q
�;�2Pn

B(V� 
 V�).
The group ker �n+1 � Kn+1 acts on 
n+1 by multiplication by �n+1(c) on the

right. On every fiber of pn+1 this action is transitive, and the stabilizer of every point
is ker �n+1 \ ker �n+1 . Since ker �n+1 is a compact Lie group, by Gleason’s theorem
we conclude that pn+1 : 
n+1 ! R�+ is a fiber bundle, hence it is a trivial bundle.
Choosing a continuous section of this bundle, by definition of 
n+1 we conclude
that there exist unitary Drinfeld twists E q such that the map q 7! (�� 
 ��)(E q) is
continuous for all �; � 2 Pn+1 and (�� 
 ��)(E q) = (�� 
 ��)(F

q
n ) for all �; � 2 Pn .

There exists a unitary central element c in U (G) such that E 1 = (c� 
 c�)�̂(c). We
can then set F q

n+1 = E q(c
 c)�̂(c)� . This finishes the proof of the induction step.

Assume now that f q : U (Gq) ! U (G)gq>0 is another continuous family of �-iso-
morphisms such that  1 = �, and fE qgq>0 is a corresponding continuous family of
unitary Drinfeld twists with E 1 = 1. For every � 2 P+ , let 'q�;  

q
� : B(V

q
� ) ! B(V�)

be the isomorphisms defined by 'q and  q . The set of unitaries v 2 B(V�) such that
 
q
� = v'

q
�(�)v

� forms a circle bundle over R�+ , so it has a continuous section v
q
� . Since

 1
� = '1

� = �, we may assume that v1
� = 1. The unitaries vq� define a continuous family

of unitaries vq 2 U (G).
For every q > 0, the element (vq 
 vq)F q�̂(vq)� is a unitary Drinfeld twist for  q .

Hence, for every q , there exists a unitary central element c 2 U (G) such that

(4.3.2) E q = (vq 
 vq)F q�̂(vq)�(c
 c)�̂(c)�:

Furthermore, the element c is defined up to a group-like unitary element in the center
of U (G), that is, by Theorem 3.2.1, up to an element of the center Z(G) of G. There-
fore, applying once again Gleason’s theorem (which in this case is quite obvious as
Z(G) is finite), we see that the set of pairs (q; c) with c satisfying (4.3.2) is a principal
Z(G)-bundle over R�+ , hence it has a continuous section q 7! (q; cq). The element c1

is group-like, so replacing cq by cqc1� we may assume that c1 = 1. Letting uq = cqvq , we
get the required continuous family of unitary elements.

Finally, if ~uq is another continuous family of unitary elements with the same proper-
ties, then cq = ~uquq� is a unitary central group-like element in U (G), hence cq 2 Z(G).
Since cq depends continuously on q , Z(G) is finite and c1 = 1, we conclude that cq = 1

for all q .
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We finish the section by explaining Drinfeld’s initial motivation for defining
D (g; ~) and proving the equivalence of categories. Given a strict braided C� -tensor
category C and an object V in C , we can define a representation � : Bn ! End(V 
n)

of the braid group Bn by �(gi) = �i;i+1 for 1 � i � n � 1. Theorem 2.6.5(i) shows
that the braid relations are indeed satisfied. More generally, even if the category is
nonstrict, it is equivalent to a strict one, so we still get a representation of Bn on an
object V 
n that is defined as the n-th tensor power of V with some fixed arrangement
of brackets; for example, we can take

V 
n = (: : : ((V 
 V )
 V ) : : : )
 V:

The following result is a version of the famous Kohno-Drinfeld theorem.

Theorem 4.3.9. — Assume ~ 2 iR and q = e�i~ . Let V be a finite dimensional g-module and
V q be the corresponding Uqg-module, so the multiplicity of V q

� in V q is the same as the multiplicity
of V� in V for every � 2 P+ . Then the representation of Bn on V 
n defined by monodromy of the
KZn equations with the parameter ~ is equivalent to the representation of Bn on (V q)
n defined
by braiding on Cq(g).

Proof. — First one has to show that the representation of Bn on V 
n defined by
monodromy is equivalent to the representation defined by braiding on D (g; ~) cor-
responding to some fixed arrangement of brackets on V 
n . For n = 2 this is easy,
while for n = 3 this follows from our discussion in Section 4.1, Indeed, we showed
there that the representation defined by monodromy with respect to some base point
is equivalent to

g1 7! �12e
�i~t12 ; g2 7! �(~t12; ~t23)�1�23e

�i~t23�(~t12; ~t23);

which is exactly the representation defined by braiding on (V 
V )
V . For n > 3 this
requires a bit more thorough discussion of monodromy of the KZ-equations, which we
omit, see e.g., [30].

Consider now a braided monoidal equivalence F : D (g; ~) ! Cq(g) as in Theo-
rem 4.2.1. We can take V q = F (V ). Let �~ be the representation of Bn on V 
n de-
fined by braiding on D (g; ~), and �q be the representation of Bn on F (V )
n defined
by braiding on Cq(g). The tensor functor gives us an isomorphism F (V 
n)! F (V )
n ,
which intertwines F�~ with �q . On the other hand, as we have already used in the
proof of Theorem 4.3.1, there exists a natural isomorphism � of the forgetful functor
on D (g; ~) and the functor F . Then by naturality �V 
n : V 
n ! F (V 
n) intertwines
�~ with F�~ . Hence the representations �~ and �q are equivalent.

Somewhat more explicitly this equivalence can be described as follows. To simplify
the notation consider the case n = 3. Fix an isomorphism ' : U (Gq) ! U (G) and a
Drinfeld twist F . This gives us a braided monoidal equivalence F : D (g; ~)! Cq(g),
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with F (V ) = V considered as a Uqg-module using ' and F2 =F �1 . Then

(F 
 �)(�̂
 �)(F ) : V 
3 ! V 
3

intertwines the representation �~ of B3 on (V 
 V ) 
 V with the representation �q

on F (V )
3 = V 
3 .

References. — [27], [30], [52], [66], [68], [70], [67], [72].

4.4. NORMALIZATION OF DRINFELD TWISTS

In this last section we will study the behavior of Drinfeld twists under the action of
the antipode, and will show that there is a class of Drinfeld twists for which this action
has a particularly nice form.

It will be convenient to choose an isomorphism ' : U (Gq)! U (G) satisfying addi-
tional properties. Recall that we denote by R̂q the unitary antipode on U (Gq). For q =

1 it coincides with the antipode Ŝ .

Lemma 4.4.1. — For every q > 0 there exists a �-isomorphism ' : U (Gq) ! U (G) that ex-
tends the canonical identification of the centers and satisfies the property 'R̂q = Ŝ'. Furthermore,
such isomorphisms can be chosen to be continuous in q and such that they are the identity maps
on the maximal torus T .

Proof. — If we identify U (G) with
Q

�2P+
B(V�) and U (Gq) with

Q
�2P+

B(V
q
� ), then

choosing ' is the same as choosing �-isomorphisms '� : B(V
q
� )! B(V�). Let �� be the

highest weight of �V
q
� ; we know that �� = �w0�, but this will not be important. The

unitary antipode maps B(V
q
� ) onto B(V

q
��
). For every representative � of a set f�; ��g

with �� 6= �, we can take '� arbitrary and then let '�� = Ŝ'�R̂q .
Assume now that �� = �, so �V

q
�
�= V

q
� . This means that there exists an anti-linear

isometry Jq : V
q
� ! V

q
� such that Jq! = R̂q(!)�Jq for ! 2 U (Gq). To construct '� we

have to find a unitary V q
� ! V� intertwining Jq with J = J1 . Since R̂2

q = �, the operator
J2
q is a scalar, say J2

q = cq1 for some cq 2 T, and then

cqJq = J3
q = Jqcq1 = �cqJq;

whence cq = �1. Furthermore, the operator Jq is uniquely determined up to a phase
factor, while the sign of J2

q is independent of any choices.

Claim 1. The sign of J2
q is the same for all q > 0.

We will show that the sign depends continuously on q . Multiplying Jq by a phase
factor we may assume that Jq maps the highest weight vector �

q
� onto a fixed lowest

weight vector �
q
� of norm one. There exist indices i1; : : : ; in such that the vector ~�

q
� =

COURS SPÉCIALISÉS 20



4.4. NORMALIZATION OF DRINFELD TWISTS 149

F
q
i1
: : : F

q
in
�
q
� is nonzero. Then we can take �

q
� = ~�

q
�=k

~�
q
�k. Furthermore, as we have al-

ready used in the proof of Lemma 4.3.4, the scalar products of vectors of the form
F
q
j1
: : : F

q
jm
�
q
� depend continuously on q . Hence the same indices i1; : : : ; in can be used

to define a lowest weight vector for all values of the deformation parameter close to q .
We have

(J2
q �

q
�; �

q
�) = k~�

q
�k
�1(JqF

q
i1
: : : F

q
in
�
q
�; �

q
�)

= k~�
q
�k
�1(R̂q(F

q
i1

)� : : : R̂q(F
q
in

)�Jq�
q
�; �

q
�)

= k~�
q
�k
�2(F

q
i1
: : : F

q
in
�
q
�; R̂q(F

q
in

) : : : R̂q(F
q
i1

)�
q
�):

As R̂q(Fi) = �q�1
i FiKi by (2.4.2), we see that (J2

q �
q
�; �

q
�) depends continuously on q .

The first part of the lemma follows now from the following elementary result.

Claim 2. For any finite dimensional Hilbert space H , the unitary conjugacy class of an anti-linear
isometry J on H such that J2 = �1 is completely determined by the sign of J2 .

Indeed, if J2 = 1, then the space of vectors invariant under J forms a real form of
the Hilbert space H , and any two real forms are unitarily conjugate. If J2 = �1, then
for any vector � we have J� ? �, since

(�; J�) = (JJ�; J�) = �(�; J�):

This implies that there exists an orthonormal basis in H of the form

e1; Je1; : : : ; em; Jem:

Any two such J are clearly unitarily conjugate.

In order to prove the second part, recall that by Lemma 3.2.4 there already exists a
continuous family of isomorphisms 'q = ('

q
�) : U (Gq) ! U (G) that are the identity

maps on T . We modify '
q
� as follows. For every representative � of a set f�; ��g with

�� 6= �, we keep '
q
� intact and let 'q�� = Ŝ'

q
�R̂q . In the case �� = � recall from the proof of

Lemma 3.2.4 that locally '
q
� are implemented by unitaries uq� : V

q
� ! V� defined using

orthonormal bases in V
q
� (�) that consist of linear combinations of vectors of the form

F
q
j1
: : : F

q
jm
�
q
� with coefficients continuous in q . If Jq is chosen as in the proof of Claim 1

above, then the matrices of Jq in these bases depend continuously on q , so the anti-
linear isometries uq�Jqu

q�
� on V� are continuous in q . Note also that Jq maps V q

� (�) onto
V
q
� (��). We now modify uq� as follows. For every representative � of a set f�;��g with
� 6= 0, we keep the restriction of uq� to V

q
� (�) intact and let uq� = J�1u

q
�Jq on V

q
� (��).

Finally, it is clear from the proof of Claim 2 that we can choose a continuous family of
unitaries wq on V�(0) such that wquq�Jqu

q�
� w

q� = J . We then replace the restriction of uq�
to V

q
� (0) by wqu

q
� .

From now on fix q > 0 and a �-isomorphism ' : U (Gq)! U (G) such that it extends
the canonical identification of the centers, acts as the identity map on the maximal
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torus T , and satisfies 'R̂q = Ŝ'. By (2.4.1) it follows that

'Ŝq = (Ad q�h�)Ŝ':

Denote by 
q the central element in U (G) that acts on V� as multiplication by 
dim V�

dimq V
q
�

!1=2

:

Theorem 4.4.2. — Let F 2 U (G � G) be a unitary Drinfeld twist for Gq corresponding to
the isomorphism '. Then

m(�
 Ŝ)(F ) = v
qq
�h�

for some Ŝ -invariant central unitary element v 2 U (G), where m : U (G � G) ! U (G) is
the multiplication map. In particular, there exists a unitary Drinfeld twist F such that m(� 


Ŝ)(F ) = 
qq
�h� .

We will divide the proof into several lemmas. We will use notation from Section 2.6
by working with elements of U (Gn) as if they were elementary tensors. Then, for ex-
ample, the element m(�
 Ŝ)(F ) can be written as F1Ŝ(F2).

Let ~ 2 iR be such that q = e�i~ .

Lemma 4.4.3. — For the element � = �(~t12; ~t23) we have �1Ŝ(�2)�3 = 
2
q .

Proof. — For � 2 P+ , the element �1Ŝ(�2)�3 acts on V� as the composition

V�
�r
�
��! (V� 
 �V�)
 V�

�
�! V� 
 ( �V� 
 V�)

�
r�
��! V�;

where (r; �r) is the canonical solution of the conjugate equations for the space V� de-
fined in Example 2.2.2. At the same time, since D (g; ~) is unitarily monoidally equiv-
alent to Cq(g), there exists a solution (R; �R) of the conjugate equations for (V�; �V�)

such that kRk = k �Rk = (dimq V
q
� )1=2 . Then by definition the above composition with

(r; �r) replaced by (R; �R) is the identity map. Since the space of morphisms 1! V�
 �V�
is one-dimensional, the morphisms R and �R coincide with r and �r up to scalar factors.
Since krk = k�rk = (dim V�)

1=2 , it follows that �1Ŝ(�2)�3 acts on V� as a scalar cq(�)

of modulus
dim V�

dimq V
q
�

. The scalars cq(�) depend continuously on q .

As we remarked at the end of the proof of Theorem 4.1.4, we have ��1 = �321 .
Since � is unitary, it follows that the element �1Ŝ(�2)�3 is self-adjoint. Hence cq(�)

is real, and therefore it must be equal to
dim V�

dimq V
q
�

.

Put u =F1Ŝ(F2).

Lemma 4.4.4. — We have u�1 = 
�2
q Ŝ(F �

1 )F �
2 .
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Proof. — Apply m(2)(�
 Ŝ 
 �), where m(2) = m(m
 �), to the identity

(4.4.1) � = (�
 �̂)(F �)(1
F �)(F 
 1)(�̂
 �)(F ):

By the previous lemma, on the left hand side we get 
2
q . In order to compute the right

hand side observe that for every element ! 2 U (G3) we have

m(2)(�
 Ŝ 
 �)(!(�̂
 �)(F )) = !1F1;(1)Ŝ(F1;(2))Ŝ(!2)!3F2

= !1Ŝ(!2)!3("̂
 �)(F ) = !1Ŝ(!2)!3:

Similarly,

m(2)(�
 Ŝ 
 �)((�
 �̂)(F �)!) = m(2)(�
 Ŝ 
 �)(!):

Using these identities, by applying m(2)(�
 Ŝ 
 �) to the right hand side of (4.4.1) we
get

m(2)(�
 Ŝ 
 �)((1
F �)(F 
 1)) =F1Ŝ(F2)Ŝ(F �
1 )F �

2 ;

so 
2
q = uŜ(F �

1 )F �
2 .

Lemma 4.4.5. — We have 'Ŝq = (Ad u)Ŝ'. Therefore the element uqh� is central.

Proof. — We claim that the map Ŝu = (Ad u)Ŝ is an antipode for the comultiplication
�̂F = (AdF )�̂ in the sense that

m(Ŝu 
 �)�̂F = "̂(�)1 = m(�
 Ŝu)�̂F :

We will only check the first identity. We have

m(Ŝu 
 �)�̂F (!) = m(uŜ(�)u�1 
 �)(F1!(1)F
�

1 
F2!(2)F
�

2 )

= uŜ(F �
1 )Ŝ(!(1))Ŝ(F1)u�1F2!(2)F

�
2 :

By the previous lemma,

Ŝ(F1)u�1F2 = 
�2
q Ŝ(F1)Ŝ(F �

1 )F �
2 F2 = 
�2

q m(Ŝ 
 �)(F �F ) = 
�2
q :

Therefore

m(Ŝu 
 �)�̂F (!) = 
�2
q uŜ(F �

1 )Ŝ(!(1))!(2)F
�

2 = "̂(!)
�2
q uŜ(F �

1 )F �
2 = "̂(!)1:

On the other hand, Ŝ0 = 'Ŝq'
�1 is also an antipode for �F . The standard proof of

the uniqueness of the antipode shows that Ŝ0 = Ŝu :

Ŝ0(!) = Ŝ0(�
 "̂)�̂F (!) = m(Ŝ0 
 m(�
 Ŝu)�̂F )�̂F (!)

= m(2)(Ŝ0 
 �
 Ŝu)�̂
(2)
F

(!) = Ŝu(!):

The last statement in the formulation follows from 'Ŝq = (Ad q�h�)Ŝ'.

Lemma 4.4.6. — We have Ŝ(u)u� = 
2
q and uu� = 
2

q q
�h2� .
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Proof. — The first identity easily follows from Lemma 4.4.4:

u� = (F1Ŝ(F2))� = Ŝ(Ŝ(F �
1 )F �

2 ) = Ŝ(
2
qu
�1) = 
2

q Ŝ(u)�1:

For the second one, we have

uu� =F1Ŝ(F2)Ŝ(F �
2 )F �

1 = m(2)(�
 Ŝ 
 �)((1
F �
21)(F 
 1)):

Put R = ('
 ')(Rq) =F21q
tF � . Then F �

21 = qtF �R �1 , and we get

uu� = m(2)(�
 Ŝ 
 �)((1
 qtF �R �1)(F 
 1))

=F1Ŝ(F2)Ŝ((R �1)1)Ŝ(F �
1 )Ŝ((qt)1)(qt)2F

�
2 (R �1)2:

From the identity t = 1
2(�̂(C) � 1 
 C � C 
 1), where C is the Casimir operator, we

get

Ŝ((qt)1)(qt)2 = q�C :

It follows that

uu� = q�CF1Ŝ(F2)Ŝ((R �1)1)Ŝ(F �
1 )F �

2 (R �1)2 = q�C
2
quŜ((R �1)1)u�1(R �1)2:

Now recall from Example 2.6.12 that the twist � for Gq equals q�Cq , while ��1 =

Ŝq((R �1
q )1)(R �1

q )2q
h2� by (2.6.5). This shows that Ŝq((R �1

q )1)(R �1
q )2 = qCq q�h2� ,

which means that

uŜ((R �1)1)u�1(R �1)2 = qCq�h2� :

Therefore uu� = q�C
2
q q

Cq�h2� = 
2
q q
�h2� .

Proof of Theorem 4.4.2. — Since uu� = 
2
q q
�h2� by the previous lemma, we have by polar

decomposition that u = 
qq
�h�v for a unitary v . Since uqh� is central by Lemma 4.4.5,

the element v must be central. From the identity Ŝ(u)u� = 
2
q we then get Ŝ(v)v� = 1,

so v is Ŝ -invariant.
If v 6= 1, consider the Drinfeld twist ~F = (w� 
 w�)F �̂(w), where w is a central

unitary element such that "̂(w) = 1. Then

~F1Ŝ( ~F2) = w�F1Ŝ(F2)Ŝ(w)� = w�Ŝ(w)�v
qq
�h� :

Therefore to prove the second part of the theorem it suffices to show that for every
central unitary Ŝ -invariant element v such that "̂(v) = 1 there exists a central unitary
element w such that v = wŜ(w) and "̂(w) = 1. This is straightforward, we can even
choose w to be Ŝ -invariant.

For a unitary Drinfeld twist F such that F1Ŝ(F2) = 
qq
�h� consider the unitary

element

E = (Ŝ 
 Ŝ)(F21)F :
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Theorem 4.4.7. — The unitary E does not depend on the choice of ' and F with properties
as described above. It satisfies the following properties:

(i) E 2 U (G� G) is invariant, that is, it commutes with all elements of the form �̂(!);

(ii) ("̂
 �)(E ) = (�
 "̂)(E ) = 1;

(iii)E21 = E ;

(iv) �(~t12; ~t23) = (�
 �̂)(E �)(1
 E �)�(�~t12;�~t23)(E 
 1)(�̂
 �)(E );

(v) E is (Ŝ 
 Ŝ)-invariant;

(vi)m(�
 Ŝ)(E ) = 1.

Proof. — We start by verifying property (i) for fixed ' and F . Applying Ŝ 
 Ŝ to the
identity

('
 ')�̂q =F �̂'(�)F �

and using Ŝ' = 'R̂q , we get

('
 ')�̂
op
q R̂q = (Ŝ 
 Ŝ)(F �)�̂'R̂q(�)(Ŝ 
 Ŝ)(F );

so that by applying the flip we obtain

('
 ')�̂q = (Ŝ 
 Ŝ)(F �
21)�̂'(�)(Ŝ 
 Ŝ)(F21):

It follows that the element E = (Ŝ 
 Ŝ)(F21)F is invariant.

Assume now that (~'; ~F ) is another pair with properties as prescribed before. By
Theorem 4.3.6 and the discussion preceding it, there exists a unitary v 2 U (G) such
that ~' = (Ad v)', ~F = (v 
 v)F �̂(v)� and "̂(v) = 1. Since ~' is assumed to be the
identity map on the maximal torus, the element v commutes with q�h� . Then

m(�
 Ŝ)( ~F ) = v m(�
 Ŝ)(F )Ŝ(v) = vŜ(v)
qq
�h� :

Hence vŜ(v) = 1. Then

(Ŝ 
 Ŝ)( ~F21) ~F = �̂Ŝ(v�)(Ŝ 
 Ŝ)(F21)(Ŝ(v)v 
 Ŝ(v)v)F �̂(v�) = �̂Ŝ(v�)E �̂(v�):

The last expression is equal to E , since E is invariant and Ŝ(v)v = 1. Thus E is indeed
independent of (';F ).

Property (ii) follows from the corresponding property of F .

In order to prove property (iii) apply Ŝ 
 Ŝ to the identity

('
 ')(Rq) =F21q
tF �:

Using that (R̂q 
 R̂q)(Rq) =Rq by Theorem 2.6.6(iv), we get

('
 ')(Rq) = (Ŝ 
 Ŝ)(F �)qt(Ŝ 
 Ŝ)(F21):

It follows that
E21q

t = qtE :
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Since E is invariant and t = 1
2(�̂(C)� 1
C �C 
 1), the element E commutes with

t. Hence E21 = E .

Turning to (iv), first note that if A and B are operators on a finite dimensional space
V , and � is an anti-automorphism of B(V ), then �(�(A; B))�1 = �(��(A);��(B)).
This follows from the definition of � by observing that if G is an invertible solution of

G0 =

�
A

x
+

B

x� 1

�
G;

then for ~G = �(G)�1 we have

~G0 = ��(G)�1�(G0)�(G)�1

= ��(G)�1�

��
A

x
+

B

x� 1

�
G

�
�(G)�1 = �

�
�(A)

x
+

�(B)

x� 1

�
~G:

It follows, by letting � = Ŝ , that

(Ŝ 
 Ŝ 
 Ŝ)(��) = �(�~t12;�~t23);

where � = �(~t12; ~t23). At the same time

�� = �321 = (�̂
 �)(F �
21)(F �

21 
 1)(1
F21)(�
 �̂)(F21);

so applying Ŝ 
 Ŝ 
 Ŝ and using (Ŝ 
 Ŝ)(F21) = EF � we get

(Ŝ 
 Ŝ 
 Ŝ)(��) = (�
 �̂)(EF �)(1
 EF �)(FE � 
 1)(�̂
 �)(FE �)

= (�
 �̂)(E )(1
 E )�(E � 
 1)(�̂
 �)(E �);

where we again used invariance of E . This proves (iv).

Property (v) is a consequence of (iii), since

(Ŝ 
 Ŝ)(E ) = (Ŝ 
 Ŝ)(F )F21 = E21:

Finally, in order to prove property (vi) observe that since E is invariant, the element
c = E1Ŝ(E2) is central. Indeed, if ! 2 U (G), then from E �̂(!) = �̂(!)E we get
"̂(!)c = !(1)cŜ(!(2)); and writing !(1) 
 !(2) 
 !(3) for �̂(2)(!) we compute:

!c = !(1)c"̂(!(2)) = !(1)cŜ(!(2))!(3) = "̂(!(1))c!(2) = c!:

By applying m(�
 Ŝ) to the identity F = (Ŝ 
 Ŝ)(F �
21)E we now obtain


qq
�h� = Ŝ(F �

2 )cF �
1 = c(F1Ŝ(F2))� = c
qq

�h� :

Hence c = 1.

For every fixed q properties (i)-(vi) in the above theorem do not completely deter-
mine E , but the whole family of such elements for all q > 0 turns out to be uniquely
determined by them. To formulate the result, observe that this family must be con-
tinuous. Indeed, by Lemma 4.4.1 there exists a continuous family of �-isomorphisms
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'q : U (Gq) ! U (G) such that they are the identity maps on the maximal torus and
satisfy 'qR̂q = Ŝ'q . By Theorem 4.3.8 there exists a continuous family of unitary Drin-
feld twists F q corresponding to 'q . By Theorem 4.4.2 we can modify F q such that
we get m(� 
 Ŝ)(F q) = 
qq

�h� . Furthermore, from the proof of that theorem, which
consists simply of taking square roots in the algebra of Ŝ -invariant central elements, it
is clear that we can arrange the modified family to remain continuous. Then the ele-
ments (Ŝ 
 Ŝ)(F

q
21)F q depend continuously on q .

Theorem 4.4.8. — There exists a unique continuous family fE qgq>0 of unitary elements
in U (G � G) such that E 1 = 1 and such that for every q > 0 the unitary E q satisfies
properties (i)-(vi) from Theorem 4.4.7 (with ~ 2 iR such that q = e�i~ ).

Proof. — Let us first show that if E and ~E are two unitary elements satisfying prop-
erties (i)-(vi) for some q > 0, then there exists a central unitary element v such that
~E = (v 
 v)E �̂(v)� . Take a unitary Drinfeld twist F for Gq corresponding to some
�-isomorphism U (Gq) �= U (G). Put ~F =FE � ~E . Then ~F is a Drinfeld twist corre-
sponding to the same isomorphism, with properties (i)-(iv) of the Drinfeld twist follow-
ing from the corresponding properties (i)-(iv) of E and ~E . By Theorem 4.3.6 there
exists a central unitary element v 2 U (G) such that

FE � ~E = ~F = (v 
 v)F �̂(v)�;

whence ~E = (v 
 v)E �̂(v)� .
Furthermore, property (ii) implies "̂(v) = 1. Property (v) shows that

(Ŝ(v)
 Ŝ(v))�̂(Ŝ(v))� = (v 
 v)�̂(v)�;

that is, v�Ŝ(v) is group-like, while property (vi) gives vŜ(v) = 1. Therefore the element
v2 is central and group-like, so it is an element of the center of G.

Assume now we have two continuous families fE qgq and f ~E qgq of unitaries satisfy-
ing properties (i)-(vi) such that E 1 = ~E 1 = 1. For every q > 0 choose a central unitary
element vq such that ~E q = (vq 
 vq)E

q�̂(vq)
� . As in the proof of Theorem 4.3.8 we

can arrange these unitaries to be continuous in q and assume v1 = 1. Then fv2
q gq is

a continuous family of elements of the finite center of G, hence v2
q = 1 for all q . But

then using continuity once again we get vq = 1. Thus ~E q = E q .

It would be interesting to get a more explicit and conceptual description of the fam-
ily fE qgq .

References. — [27], [68].
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The book provides an introduction to the theory of compact quantum groups,
emphasizing the role of the categorical point of view in constructing and an-
alyzing concrete examples. The general theory is developed in the first two
chapters and is illustrated with a detailed analysis of free orthogonal quantum
groups and the Drinfeld-Jimbo q-deformations of compact semisimple Lie
groups. The next two chapters are more specialized and concentrate around
the Drinfeld-Kohno theorem, presented from the operator algebraic point
of view. The book should be accessible to students with a basic knowledge of
operator algebras and semisimple Lie groups.
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Mathématiques de Paris. His research interests include dynamical
systems, noncommutative geometry and quantum groups.

Lars Tuset completed his Ph.D. at the Norwegian University of
Technology in Trondheim in 1995. He works at the Department of
Computer Science of Oslo and Akershus University College of Ap-
plied Sciences, Norway, where he became Professor of Mathematics
in 2005. He has extensively published in the fields of noncommu-
tative geometry, quantum groups and tensor categories.


	Preface
	Chapter 1. Compact Quantum Groups
	1.1. Definition and first examples
	1.2. Haar state
	1.3. Representation theory
	1.4. Quantum dimension and orthogonality relations
	1.5. Infinite dimensional representations
	1.6. Hopf *-algebra of matrix coefficients
	1.7. Modular properties of the Haar state

	Chapter 2. C*-Tensor Categories
	2.1. Basic definitions
	2.2. Conjugate objects and intrinsic dimension
	2.3. Fiber functors and reconstruction theorems
	2.4. Drinfeld-Jimbo deformation of compact Lie groups
	2.5. Representation category of SUq(2)
	2.6. Braided and ribbon categories
	2.7. Amenability

	Chapter 3. Cohomology of Quantum Groups
	3.1. Dual cocycles
	3.2. Group-like elements
	3.3. Kazhdan-Lusztig comonoid
	3.4. Computation of invariant second cohomology

	Chapter 4. Drinfeld Twists
	4.1. Drinfeld category
	4.2. Equivalence of tensor categories
	4.3. Drinfeld twists
	4.4. Normalization of Drinfeld twists

	Bibliography
	List of Symbols
	Index

