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Wired Communication Networks
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TX2 MUX

TX
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span 1 span 2 span N

Fiber Amplifier MUX Fiber Amplifier MUX Fiber Amplifier

RX

(1) Multiple users with add-drop multiplexers (ADMs); (2) interference unknown
to the user-of-interest (UOI); (3) network topology unknown

4



Optical Fiber

‚ Adtantages: Low-loss („ 0.2 dB/km), huge bandwidth („5-10 THz
bandwidth), all-optical prosseing (laser sources, amplifiers, detectors)

‚ Challenges: Refractive index is a function of frequency and intensity

npω, |q|2q “ n0 ` n1pω ´ ω0q ` n2pω ´ ω0q2 ` ¨ ¨ ¨
loooooooooooooooooooooooomoooooooooooooooooooooooon

dispersion

` γ0|q|2
loomoon

Kerr nonlinearity

` ¨ ¨ ¨

intuition

1 Dispersion: n depends on frequency

2 Kerr nonlinearity: the intensity of the
signal modifies the refractive index!

3 High reliability: Pe “ 10´15

4 High speed: 400 Gb/s
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Stochastic Nonlinear Schrödinger Equation

optical fiberqpt, 0q
input waveform

qpt,Lq
output waveform

L
Pulse propagation in optical fibers can be modeled by the
stochastic nonlinear Schrödinger (NLS) equation:

Bqpt, zq
Bz “ B2qpt, zq

Bt2
loooomoooon

dispersion

˘ 2j |qpt, zq|2qpt, zq
looooooooomooooooooon

nonlinearity

` npt, zq
loomoon

noise

qpt, zq is the signal, t is time, z is distance
Distributed white Gaussian noise
` focusing regime, ´ defocusing regime
Vectorial generalizations exit
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Fourier Analysis of the NLS Equation
Assume a Fourier series with variable coefficients for qpt, zq at z ą 0

qpt, zq “
N´1
ÿ

k“0

qkpzqe j2πkWt .

Substituting (1) into the NLS equation

j
Bqkpzq
Bz “ ´4π2W 2k2qkpzq

looooooooomooooooooon

dispersion

` 2|qkpzq|2qkpzq
looooooomooooooon

SPM

` 4qkpzq
ÿ

`‰k

|q`pzq|2
loooooooooomoooooooooon

XPM

` 2
ÿ

`‰m
`‰k

q`pzqq˚mpzqqk`m´`pzq
loooooooooooooooomoooooooooooooooon

FWM

`nkpzq,

in which nk are the noise coordinates and where we have identified the
dispersion, self-phase modulation (SPM), cross-phase modulation (XPM)
and four-wave mixing (FWM) terms.
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Nonlinear Effects in Fibers

nonlinearitynoise

dispersion

, interactions

, deterministic
signal Ø signal

, inter-channel

, XPM , FWM

, intra-channel

, SPM , XPM , FWM

, stochastic

, signal Ø noise

, inter-
channel

, intra-
channel

, noise Ø noise

SPM & XPM= self- & cross- phase modulation; FWM = four-wave mixing.
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Example of Signal Propagation
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The State-of-the-Art Approach

1 TX: Wavelength-division multiplexing (WDM)

input
output
noise

loomoon

COI

loomoon

out of band

loomoon

out of band f

W guard band

2 RX: Digital back-propagation (BP)

qpt,Lq “ KNLSpqpt, 0qq qpt, 0q “ K´1
NLSpqpt,Lqq

qpt, 0q qpt, 0q
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Current Achievable Rates
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Linear AWGN channels
Nonlinear fiber channel

Fiber nonlinearity places an upper limit on capacity

Nonlinear Shannon limit in fiber

Capacity crunch in fiber!

Central Question:
Does fiber nonlinearity really place an upper limit on achievable spectral
efficiency?
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Origin of the Capacity Limitation – 1
Let T : H ÞÑ H be a linear map:

y “ T pxq ` n,

where x and y are input and output signals and n is noise.

Projecting signals onto an orthonormal basis tφkukPN:
 

x , y , n
( “

8
ÿ

k“1

 

xk , yk , nk
(

φk , Thus:

yk “ xkxTφk , φky `
ÿ

i‰k

xixTφi , φky
looooooomooooooon

linear interactions

`nk

However, if tφkptquk is the set of eigenvectors of T , then

yk “ λkxk ` nk

where λk is eigenvalue.
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Origin of the Capacity Limitations – 2

Capacity crunch occurs if the basis used for communication is not
compatible with the channel.

Deterministic nonlinear effects are not a fundamental limitation. It
is the method of the communication causing the problem

After abstracting away non-essential aspects, current methods, in
essence, modulate linear-algebraic modes

In nonlinear channels, this introduces interference and ISI

BP cannot remove the interference in a network scenario

Linear
multiplexing

Pulse trains

Polarization-division multiplexing

Time-division multiplexing

Space-division multiplexing

Orthogonal frequency-division multiplexing

Wavelength-division multiplexing
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Nonlinear frequency-division multiplexing (NFDM)

It was realized that the NLS equation supports nonlinear
eigenfunctions which have a crucial independence property, the
key to build a multiuser system

The tool necessary to reveal signal degrees of freedom is

Nonlinear Fourier Transform

Based on NFT, we constructed an NFDM, which can be viewed as a
generalization of OFDM to optical fiber

Exploiting the integrability, NFDM modulates non-interacting
degrees-of-freedom

Capacity of the NFDM in the deterministic model is infinite
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Linear Convolutional Channel

Let Thpxq “ h ˙ x

yptq “ hptq˙ xptq ` nptq , 0 ď t ă T .

The eigenvectors and eigenvalues of Thpxq “ h ˙ x are

φkptq “ 1?
T

expp´jkω0tq, ω0 “ 2π
T
,

and λk “ Fphptqqpkω0q.
Fourier transform maps convolution into a multiplication operator

Y pωq “ Hpωq•X pωq ` Npωq , ω “ kω0.

1 Frequency ω is conserved in the channel

2 Channel is decomposed into parallel independent channels
3 OFDM: information is encoded in spectral amplitudes X pωq
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General Waveform Channels

Instantaneous waveform channel

channel
q0ptq qptq

qptq “ K pq0ptqq ` nptq
Evolutionary channel. Here the signal evolves according to an
evolution equation in 1+1 dimensions (time t, distance z)

Bq
Bz “ K pqpt, zqq ` nptq

Examples: (qt :“ Btq)
‚ K pqq “ j |q|2 (memoryless) ‚ K pqq “ ´jpqtt ` 2|q|2qq(NLS)
‚ K pqq “ qtt (heat eq.) ‚ K pqq “ qttt ` 6qqt (KdV)
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Isospectral Flow

A Key Idea
We seek an invariant under evolution (in the absence of noise). Let
L be a linear differential operator (depending on qpt, zq). It may be
possible to find an L whose (eigenvalue) spectrum remains constant,
even as q evolves (in z).

channel

Lpq0ptqq Lpqptqq

q0ptq qptq

0 ¨ ¨ ¨ z ¨ ¨ ¨ L

qpt, 0q ¨ ¨ ¨ qpt, zq ¨ ¨ ¨ qpt,Lq

Lpqpt, 0qq ¨ ¨ ¨ Lpqpt, zqq ¨ ¨ ¨ Lpqpt,Lqq

Constant Spectrum
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Isospectral Families of Operators

If the eigenvalues of Lpzq do not depend on z , then we refer to
Lpzq as an isospectral family of operators.

Example:The operator L can be a matrix

Lpzq “
ˆ

cospzq sinpzq
sinpzq ´ cospzq

˙

, λ “ ˘1, Lpzq “ G pzqΛG´1pzq,

where Λ “ diagp1,´1q.

Compact self-adjoint operators can be diagonalized similarly, via
Hilbert-Schmidt Spectral Theorem. Here, Λ is a multiplication
operator.
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Spectrum of Bounded Linear Operators

Spectrum of an operator is defined as

σpLq “ tλ ˇˇ L´ λI is not invertibleu

Example: Linear Schrödinger
operator

Lpqpt, zqq “ ´ B
2

Bt2 ` qpt, zq. <pxq

=pxq
spectrum of L

Classification: Spectrum can be discrete (like matrices),
continuous, residual, essential, etc.
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The Lax Equation

We have Lpzq “ G pzqΛG´1pzq, where Λ does not depend on z .
Assuming that Lpzq varies smoothly with z , we can form

dLpzq
dz

“ G 1ΛG´1 ` GΛ
`´G´1G 1G´1˘

“ G 1G´1
loomoon

Mpzq

`

GΛG´1˘

loooomoooon

Lpzq

´ `

GΛG´1˘

loooomoooon

Lpzq

G 1G´1
loomoon

Mpzq

“ MpzqLpzq ´ LpzqMpzq “ rM, Ls , (1)

where rM, Ls ∆“ ML´ LM is the commutator bracket. In other
words, every diagonalizable isospectral operator Lpzq satisfies the
differential equation (1).
The converse is also true.
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Lax Pairs

Lemma
Let Lpzq be a diagonalizable family of operators. Then Lpzq is an
isospectral family if and only if it satisfies

dL

dz
“ rM, Ls, (2)

for some operator M, where rM, Ls “ ML´ LM.

Definition
The operators L and M satisfying (2) are called
a Lax Pair (after Peter D. Lax, who introduced
the concept [1968]).
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Integrable System

Let L and M be operators (depending on qpt, zq).
BL
Bz “ rM, Ls ðñ Bq

Bz “ K pqq
operator form signal form

Example [KdV]: Let qpt, zq be a real-valued function and choose

L “ B2
t ` q{3, M “ 4B3

t ` qt ` qBt .

Then:
BL
Bz “ rM, Ls ðñ qz “ qttt ` qqt .

23



NLS Equation

For the normalized nonlinear Schödinger equation

jqz “ qtt ` 2|q|2q,
Zakharov and Shabat (1972) found a Lax pair:

L “ j

¨

˚

˝

B
Bt ´qpt, zq

´q˚pt, zq ´ BBt

˛

‹

‚

,

M “
ˆ

2jλ2 ´ j |qpt, zq|2 ´2λqpt, zq ´ jqtpt, zq
2λq˚pt, zq ´ jq˚t pt, zq ´2jλ2 ` j |qpt, zq|2

˙

.

As qpt, zq evolves according to the NLS equation, the spectrum of
L is preserved.

Thus the NLS equation is indeed generated by a Lax pair!
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Nonlinear Fourier Transform. Summary-1

L “ j

¨

˚

˝

B
Bt ´qptq

´q˚ptq ´ BBt

˛

‹

‚

Generalized frequencies: eigenvalues λ of L

Nonlinear Fourier coefficients: a, b where

V pλq “
ˆ

a
b

˙

is a normalized eigenvector of L
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Nonlinear Fourier Transform. Summary-2

The Zakharov-Shabat operator has two types of spectra:

A discrete (or point) spectrum which occurs in C` and
corresponds to solitons

A continuous spectrum, which in general includes the whole
real line R

<(λ)

=(λ)
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Nonlinear Fourier Transform. Summary-3
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Properties of the NFT

1 The NFT shares some of properties of the Fourier transform (FT)

2 FT is a special case of the NFT if ||q||L1 ! 1

3

Linear: yptq “ hptq˙ xptq ÐÑ Y pωq “ HpωqX pωq
Integrable: yptq “ xptq˙ pL,M;Lq ÐÑ NFTpyqpλq “ Hpλ,LqNFTpxqpλq

where Hpλ,Lq “ e´4jλ2L is the channel filter. The generalized
frequencies are invariant in the channel.

4 When there are a finite number of parameters, the solutions can be
expressed via theta functions.
Let K be an N ˆ N complex matrix with =pKq ą 0. The Riemann
theta function is defined by

θpt|Kq “
ÿ

mPZN

exp
´

2πjpmT t` 1
2
mTKmq

¯

, t P CN .
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Launching a Pulse (revisited)

0

0.5

1

1.5

2

2.5

3

3.5

4

-15 -10 -5 0 5 10 15

|q(
t)
|

t

z=0 km
z=1000 km
z=5000 km

29



Launching a Pulse (revisited)
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Launching a Pulse (revisited)
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Launching a Pulse (revisited)
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NFDM vs WDM
W “ 60 GHz, z “ 2000 km, 15 users, one symbol per user, defocusing.
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Focusing regime, vectorial models, experiments, robustness to
perturbations, ... 30
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Shannon’s Formula for Linear Channels

The capacity of a channel pY |X py |xq
C “ sup

pX pxq

I pX ;Y q

The mutual information is defined as

I pX ;Y q “ hpY q ´ hpY |X q
where

hpX q “ ´
ż

pxpX q logppX pxqqdx .

For a linear channels

C “ logp1` SNRq, bits/s/Hz

The capacity of optical fiber is unknown, for about 50 years. Even
ppy |xq is unknown!
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Upper Bound
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Theorem
Consider the discrete-time periodic model Cn ÞÑ Cn. We have

CpPq ď logp1` SNRq.

The proof combines:

Energy and entropy conservation

Shannon’s entropy power inequality
33



Proof: Invariant Measures for PDEs

Lemma (Volume Preservation in NLS)

Let Ω “ p`2, E , µq be a measure space, where `2 ∆“  

qn | ř |qk |2 ă 8
(

and

µpAq “ volpAq “
ż

A

˜

n
ź

k“1

dqkdq˚k

¸

, @A P E ,

is the Lebesgue measure. Transformation Tz underlying the NLS equation,
as a dynamical system on Ω, is measure-preserving. That is to say

µpTzpAqq “ µpAq, @A P E .

Application 1: Theorem. The flow of Tz is entropy preserving!
Application 2: There are invariant measures. Gibbs measure:

dµx “ 1
Z

exp

#

´α
´

m
ÿ

i“1

|qi |4 ´ |qi ´ qi´1|2
¯

+

m
ź

i“1

dqi χ||q||ď1

where α ą 0, Z is the partition function, and χS is the indicator function.
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Asymptotic Capacity

Theorem
Discrete-time periodic model Cn ÞÑ Cn:

CpPq “ 1
n
logplogPq ` c ,

where c
∆“ cpn,Pq ă 8.

With n signal DOFs, n ´ 1 DOFs
are asymptotically lost to signal-
noise interactions.
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Conclusions

We showed examples where advanced mathematics help make progress in
long-standing engineering problems.

Nonlinear Fourier transforms could be used for data transmission

The growth of the capacity is too small compared to the linear
channel

C “ 1
n
logplogPq ` c
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