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@ Introduction to Optical Networks



Wired Communication Networks
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(1) Multiple users with add-drop multiplexers (ADMs); (2) interference unknown
to the user-of-interest (UOI); (3) network topology unknown
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Optical Fiber

e Adtantages: Low-loss (~ 0.2 dB/km), huge bandwidth (~5-10 THz
bandwidth), all-optical prosseing (laser sources, amplifiers, detectors)

e Challenges: Refractive index is a function of frequency and intensity

n(w,|q?) = no + m(w—wo) + m(w —wo)® +---+  7la> +--
——
dispersion Kerr nonlinearity

@ Dispersion: n depends on frequency

@ Kerr nonlinearity: the intensity of the
signal modifies the refractive index!

@ High reliability: P, = 1071
@ High speed: 400 Gb/s

intuition



Stochastic Nonlinear Schrodinger Equation

q(t, L)

optical fiber
output waveform

q(t,0)
input waveform %
—
Pulse propagation in optical fibers can be modeled by the
stochastic nonlinear Schrédinger (NLS) equation:

a t7Z 62 t,Z i
q(az - E(tz ) +2jlq(t, 2)]q(t, 2) + n(t, z)
H_/ ~ _ \

dispersion  nonlinearity  noise

@ q(t,z) is the signal, t is time, z is distance
o Distributed white Gaussian noise

o + focusing regime, — defocusing regime

o Vectorial generalizations exit



Fourier Analysis of the NLS Equation

Assume a Fourier series with variable coefficients for q(t,z) at z > 0
N—1

alt.2) = 3, aulz)eRm

k=0
Substituting (1) into the NLS equation
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in which ny are the noise coordinates and where we have identified the
dispersion, self-phase modulation (SPM), cross-phase modulation (XPM)
and four-wave mixing (FWM) terms.



Nonlinear Effects in Fibers

A\

noise nonlinearity

\J/

dispersion

interactions

deterministic 5
. 2 stochastic
signal < signal

inter-channel intra-channel signal < noise| noise < noise

[

xpM| | FWM pM| | xpMm| | FWM iz i
channel channel

SPM & XPM= self- & cross- phase modulation; FWM = four-wave mixing.



Example of Signal Propagation
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Example of Signal Propagation
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Example of Signal Propagation
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Example of Signal Propagation
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The State-of-the-Art Approach

@ TX: Wavelength-division multiplexing (WDM)

w guar?_)lband

— input ¢
—— output i
— noise i

—_—— —— —— £
out of band COl out of band

@ RX: Digital back-propagation (BP)

— q(t7 ‘C) = KNLS(q<t7 O)) q(ta 0) = KI\TLIS(q(tv ‘C)) —
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Current Achievable Rates
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Fiber nonlinearity places an upper limit on capacity
Nonlinear Shannon limit in fiber

Capacity crunch in fiber!

Central Question:

Does fiber nonlinearity really place an upper limit on achievable spectral

efficiency?
11




Origin of the Capacity Limitation — 1

Let T : H — H be a linear map:
y=T(x)+n,

where x and y are input and output signals and n is noise.

Projecting signals onto an orthonormal basis { ¢ }ken:
[ee]

{Xa% ’7} = Z{Xk7Yk7nk}¢k, Thus:

k=1

Vi = xk{T s b + D, xil Tbi, i)+
7k

linear interactions

However, if {¢x(t)}k is the set of eigenvectors of T, then

Yie = AiXi + ng J

where A\, is eigenvalue.
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Origin of the Capacity Limitations — 2

Capacity crunch occurs if the basis used for communication is not
compatible with the channel.

o

Deterministic nonlinear effects are not a fundamental limitation. It
is the method of the communication causing the problem

After abstracting away non-essential aspects, current methods, in
essence, modulate linear-algebraic modes

In nonlinear channels, this introduces interference and ISI

BP cannot remove the interference in a network scenario

—| ‘Wavelength-division multiplexing |

—| Orthogonal frequency-division multiplexing |

multiplexing

i I Space-division multiplexing |
inear

I Time-division multiplexingl

—| Polarization-division multiplexing |

3




Nonlinear frequency-division multiplexing (NFDM)

@ It was realized that the NLS equation supports nonlinear
eigenfunctions which have a crucial independence property, the
key to build a multiuser system

@ The tool necessary to reveal signal degrees of freedom is

Nonlinear Fourier Transform J

@ Based on NFT, we constructed an NFDM, which can be viewed as a
generalization of OFDM to optical fiber

@ Exploiting the integrability, NFDM modulates non-interacting
degrees-of-freedom

@ Capacity of the NFDM in the deterministic model is infinite

14
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Linear Convolutional Channel

Let Th(x) = h* x

y(t) = h(t) * x(t) +n(t), 0<t<T.

The eigenvectors and eigenvalues of Th(x) = h % x are
Pi(t) =

and A\, = F(h(t))(kwo

Fourier transform maps convolution into a multiplication operator

(_jkwot)a Wo =

T
)-

Y(w) = Hw)e X(w) + N(w) |, w = kwo.

@ Frequency w is conserved in the channel
@ Channel is decomposed into parallel independent channels

@ OFDM: information is encoded in spectral amplitudes X (w)

16



General Waveform Channels

o [Instantaneous waveform channel

qo(t) q(t)
AAv—A% channel — AVAWA—AV

a(t) = K(ao(t)) + (1) |

o Evolutionary channel. Here the signal evolves according to an
evolution equation in 1+1 dimensions (time t, distance z)
dq

5 = Kat.2) + o) |

Examples: (g: := 0:q)

* K(q) = jlg|* (memoryless) o K(q) = —j(q + 2|q°q)(NLS)
e K(q) = gt (heat eq.) * K(q) = qut + 69q: (KdV)
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Isospectral Flow

A Key ldea

We seek an invariant under evolution (in the absence of noise). Let
L be a linear differential operator (depending on q(t,z)). It may be
possible to find an L whose (eigenvalue) spectrum remains constant,
even as q evolves (in z).

go(t) q(t)
—>| channel —> AVAWA_AV

L(qo(t)) L(q(t))
0 z L
q(t,O) q(t,Z) q(t,ﬁ)

| | |
L(q(t,0)) --- L(q(t,2)) --- L(q(t, L))
| | |
[ Constant Spectrum ]
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Isospectral Families of Operators

If the eigenvalues of L(z) do not depend on z, then we refer to
L(z) as an isospectral family of operators.

Example:The operator L can be a matrix

L(z) = (Zf’:((j)) _s'c';(sz)z )), A=+1, L(z) = G(2)AG }(2),
where A = diag(1, —1).

O
Compact self-adjoint operators can be diagonalized similarly, via
Hilbert-Schmidt Spectral Theorem. Here, A is a multiplication
operator.
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Spectrum of Bounded Linear Operators

@ Spectrum of an operator is defined as

o(L) = {\|L— Xl is not invertible}

spectrum of L

E le: Li Schradi
xample: Linear Schrodinger S(x) \

operator

> Lo o
Lol 2)) =~ + alt.2), T e

o Classification: Spectrum can be discrete (like matrices),
continuous, residual, essential, etc.
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The Lax Equation

We have L(z) = G(z)AG™1(z), where A does not depend on z.
Assuming that L(z) varies smoothly with z, we can form

e R Y@ teltea)
dz
= G'G'(GNGY) - (GG GG
N ~——
M) 1z MG
= M(2)L(z) - L(z)M(z) = [M, L], (1)

where [M, L] & ML — LM is the commutator bracket. In other
words, every diagonalizable isospectral operator L(z) satisfies the
differential equation (1).

The converse is also true.

21



Lax Pairs

Lemma

Let L(z) be a diagonalizable family of operators. Then L(z) is an
isospectral family if and only if it satisfies

dL

— =|M,L 2

=M1, )
for some operator M, where [M, L] = ML — LM.

Definition

The operators L and M satisfying (2) are called
a Lax Pair (after Peter D. Lax, who introduced
the concept [1968]).

22




Integrable System

Let L and M be operators (depending on q(t, z)).

oL oq
operator form signal form

Example [KdV]: Let q(t,z) be a real-valued function and choose

L=0%+q/3, M=43+ g+ qor.

oL
Then: E = [M, L] — |qz = Gttt + 9t |-

28]



NLS Equation

For the normalized nonlinear Schédinger equation

jaz = qu +2lql?q,
Zakharov and Shabat (1972) found a Lax pair:

0
= —ql(t,z
L_./ ft (a ) )
—q (t,Z) _a

2Aq*(t,2) — jai (t,z) =27 + j[q(t. 2)[?
As q(t, z) evolves according to the NLS equation, the spectrum of
L is preserved.

M:( 2jA% — jla(t, 2)|? —2Aq(t,z)—1qt(t,z)).

Thus the NLS equation is indeed generated by a Lax pair! J

24



Nonlinear Fourier Transform. Summary-1

0
- —a(t)
L=j 6*1“ p
—at(t) -4

o Generalized frequencies: eigenvalues X of L

o Nonlinear Fourier coefficients: a, b where

- ()

is a normalized eigenvector of L
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Nonlinear Fourier Transform. Summary-2

The Zakharov-Shabat operator has two types of spectra:

o A discrete (or point) spectrum which occurs in C* and
corresponds to solitons

@ A continuous spectrum, which in general includes the whole

real line R
() 4
o o ; o o
o o] : o] o]
:
- : -
! R(A)
o o ' )
o o : o o
:
1
1
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Nonlinear Fourier Transform. Summary-3

q(t)
N

27



Properties of the NFT

@ The NFT shares some of properties of the Fourier transform (FT)
@ FT is a special case of the NFT if ||g|,, « 1

@
Linear: y(t) = h(t) * x(t) «— Y(w) = H(w)X(w)

Integrable: y(t) = x(t) * (L, M; L) <« NFT(y)(\) = H(A, L) NFT(x)(\)

where H(\, £) = e %**L is the channel filter. The generalized
frequencies are invariant in the channel.

@ When there are a finite number of parameters, the solutions can be
expressed via theta functions.
Let K be an N x N complex matrix with $(K) > 0. The Riemann
theta function is defined by

0(tK) = ) exp(27rj(mTt+%mTKm)>, tecCh.

meZN
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Launching a Pulse (revisited)

7=0 km ——
7z=1000 km ——
3.5 F|z=5000 km ——

2.5
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Launching a Pulse (revisited)
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Launching a Pulse (revisited)
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Launching a Pulse (revisited)
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NFDM vs WDM

W = 60 GHz, z = 2000 km, 15 users, one symbol per user, defocusing.

—— input — output — input — output
1 T T T T
WDM
NFDM 2f N -
Hon

= =
=051 J z
z 1 §
Z

0 L 0 h | |

~10 0 10 6 -4 -2 0 2 4 6
A J

141 141

Achievable rate [bits/2D]

4l §
ol ) o 0 CE T Eyoryry 0 0T T
R [VmW] 141 R [VimW] 141
ol I I I I I
—25 —20 —15 —10 =5 0

P [dBm]

Focusing regime, vectorial models, experiments, robustness to
perturbations, ... 30
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Shannon’s Formula for Linear Channels

The capacity of a channel py|x(y|x)

C=sup I(X;Y)
px (x)

The mutual information is defined as

I(X;Y) = h(Y) = h(Y|X)

h(X) = — f P (X) log (px (x)) d.

For a linear channels

| C —log(1+ SNR), bits/s/Hz|

The capacity of optical fiber is unknown, for about 50 years. Even
p(y|x) is unknown!

32




Upper Bound

14 | — upper bound
——modified lower bound

';1:1? ------ lower bound
= 12 N
= Q>
Z 10f s
13 \\
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= nonlinearity
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Consider the discrete-time periodic model C" — C". We have

C(P) < log(1 + SNR).

The proof combines:

@ Energy and entropy conservation

@ Shannon's entropy power inequality
33



Proof: Invariant Measures for PDEs

Lemma (Volume Preservation in NLS)

Let Q = (2,€, 1) be a measure space, where (2 2 {a" | X |qk|* < oo}
and
1(A) = vol(A) J (]—[ ququ> VA€ &,
2 \k=1

is the Lebesgue measure. Transformation T, underlying the NLS equation,
as a dynamical system on €2, is measure-preserving. That is to say

n(T=(A)) = u(A), VAe€.

Application 1: Theorem. The flow of T, is entropy preserving!
Application 2: There are invariant measures. Gibbs measure:

1 - 4 2 -
iy = 7exp{—a(i_21|(h| —|gi — qi-1| )}qu; X|lall<t

where o > 0, Z is the partition function, and xs is the indicator function.



Asymptotic Capacity

Discrete-time periodic model C" — C":

C(P) =~ log(logP) +

where ¢ £ c(n,P) < 0.

M AwaN |
——NFDM oo
| ——WDM P T sigalnose |
12 W tions

i signal-signal
i interactions

With n signal DOFs, n — 1 DOFs
are asymptotically lost to signal-
noise interactions.

Achievable rate [bits/2D]

-20 —15 -10 -5 0
P [dBm]
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Conclusions

We showed examples where advanced mathematics help make progress in
long-standing engineering problems.

@ Nonlinear Fourier transforms could be used for data transmission

@ The growth of the capacity is too small compared to the linear
channel

1
C = - log(log P) +

36
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