Interferences in Match Kernels

Naila Murray (Naver Labs Europe)Hervé Jegou (Facebook Al Research)Florent Perronnin (Naver Labs Europe)Andrew Zisserman (DeepMind, U. of Oxford)

Horizon Maths, November 23rd, 2018

Patch-based image representations

How to represent images in a patch-based framework? Traditionally:

- extract *N* patch descriptors $\{x_1, \dots, x_N\}$
- encode patch descriptor: $x \rightarrow \varphi(x)$
- aggregate encodings

Common similarity metric:

dot-product \rightarrow can be interpreted as a match kernel

In match kernels, one has to deal with interference, i.e. with the fact that even if two descriptors are unrelated, their matching score may contribute to the overall similarity.

Coding step

Non-linear mapping $x \rightarrow \varphi(x)$ of descriptors into a higher-dim space e.g. from 128 dim \rightarrow 1K-1M dim

Possible encodings include:

• Bag-of-visual-words (BOV): $\varphi(x) = [0, 0, ..., 0, 1, 0, ..., 0]'$

Sivic, Zisserman, "Video Google: A Text Retrieval Approach to Object Matching in Videos". ICCV 2003. Csurka, Dance, Fan, Willamowski, Bray, "Visual categorization with bag of keypoints". ECCV SLCV 2004.

 Vector of Locally Aggregated Descriptors (VLAD): φ(x) = [0, ..., 0, (x - μ_i), 0, ..., 0]' Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation". CVPR 2010.

• Fisher Vector (FV):
$$\varphi(x) = \left[0, 0, ..., 0, \frac{(x-\mu_i)}{\sqrt{w_i}\sigma_i}, \frac{1}{\sqrt{2w_i}}\left(\frac{(x-\mu_i)^2}{\sigma_i^2} - 1\right), 0, ..., 0\right]'$$

Perronnin and Dance, "Fisher kernels on visual categories for image categorization". CVPR 2007.

Deep embeddings

Can use direct mapping $I \rightarrow \{\varphi_1, ..., \varphi_N\}$ from image to set of patch embeddings, e.g. using CNNs

Possible mapping functions include the convolutional sub-networks of:

- **ResNet** He, Zhang, Ren, Sun. "Deep Resdiual Learning for Image recognition". CVPR 2016.
- Dilated Residual Networks

Yu, Koltun, Funkhouser. "Dilated Residual Networks". CVPR 2017.

• DELF (DEep Local Features)

Noh, Araujo, Sim, Weyand, Han. "Largescale image retrieval with attentive deep local features". ICCV 2017.

 \rightarrow not the focus of this work, we take embeddings for granted

Aggregation step

Involves aggregating several patch embeddings:
fixed-length representation
achieves invariance to embedding perturbation
information loss

Aggregation step

Involves aggregating several patch embeddings:
fixed-length representation
achieves invariance to embedding perturbation
information loss

Two standard aggregation strategies:

Sum pooling: $\sum_i \varphi(x_i)$

Aggregation step

Involves aggregating several patch embeddings:
is fixed-length representation
achieves invariance to embedding perturbation
information loss

Two standard aggregation strategies:

Sum pooling: $\sum_{i} \varphi(x_i)$

Max pooling: $\max_{i} \varphi(x_i)$

Sum / Average pooling

 \bigcirc Applicable to any embedding function φ

8 Based on an incorrect independence assumption

 \rightarrow frequent ("bursty") descriptors over-influence the final representation

Corrected a posteriori using non-linear transformations:

- re-weighting visual words Jegou, Douze, Schmid, "On the burstiness of visual elements". CVPR 2009.
- power transformation

Perronnin, Sanchez, Liu, "Large-scale image categorization with explicit data embedding. CVPR 2010. Vedaldi, Zisserman, "Efficient Additive Kernels via Explicit Feature Maps". CVPR 2010. Perronnin, Sanchez, Mensink, "Improving the Fisher kernel for large-scale image classification". ECCV 2010.

• ℓ_2 -normalization over each VLAD pooling region Arandjelovic and Zisserman, "All about VLAD". CVPR 2013.

8 Heuristic and/or specific to a given representation

Max pooling

Frequent and rare descriptors contribute meaningfully
 Only applicable to BOV-type encodings (e.g. sparse coding)

Application to VLAD, FV, etc. is inappropriate because max operation disregards the encoding structure.

We propose two aggregation strategies that are **applicable to any** φ : Democratic Aggregation Generalized Max Pooling

Intuition

We aggregate a single embedding: \rightarrow or \rightarrow with a set of tightly clustered embeddings \rightarrow

Sum / Average Pooling

Murray, Jegou, Perronnin, Zisserman. Interferences in match kernels. TPAMI 2017. © 2017 NAVER LABS. All rights reserved.

Intuition

We aggregate a single embedding: \rightarrow or \rightarrow with a set of tightly clustered embeddings \rightarrow

Murray, Jegou, Perronnin, Zisserman. Interferences in match kernels. TPAMI 2017. © 2017 NAVER LABS. All rights reserved.

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

We wish the following to hold for each φ_i :

$$\varphi' \sum_{i=1}^N \varphi_i = c$$

 \rightarrow equal contribution of each patch to self-similarity of the set

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

We wish the following to hold for each φ_i :

$$\varphi' \sum_{i=1}^N \varphi_i = c$$

 \rightarrow equal contribution of each patch to self-similarity of the set

As we typically ℓ_2 -normalize the final embedding φ^* , we can set *c* arbitrarily.

In matrix form, with $K = \Phi' \Phi$ we rewrite:

$$K\mathbf{1}_N = \mathbf{1}_N$$

To achieve democratization we introduce a set of weights{ $\alpha_1, ..., \alpha_N$ }:

$$\alpha \varphi' \sum_{i=1}^{N} \alpha_i \varphi_i = c$$

In matrix form, with $A = diag(\alpha)$, we write: $AKA\mathbf{1}_N = \mathbf{1}_N$

We solve for A using a modified version of the Sinkhorn algorithm.

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

We wish our aggregated representation φ^* to satisfy:

$$\varphi_i'\varphi^* = c$$

 \rightarrow equalize the matching contribution of each patch

Notations:

- φ_i is the *D*×1 embedded vector of patch *i*
- $\Phi = [\varphi_1, ..., \varphi_N]$ is the *D*×*N* matrix of embeddings

We wish our aggregated representation φ^* to satisfy:

$$\varphi_i' \varphi^* = c$$

 \rightarrow equalize the matching contribution of each patch

Since we typically ℓ_2 -normalize the final φ^* , we can set *c* arbitrarily

In matrix form, we rewrite:

$$\Phi' \varphi^* = \mathbf{1}$$

 $\Phi' \varphi^* = \mathbf{1}$ is a system of *N* linear equations with *D* unknowns \rightarrow may not have a solution (e.g. D < N) \rightarrow may have an infinite number of solutions (e.g. N < D)

Turn into a least squares regression problem:

 $\varphi^* = \arg\min_{\varphi} \|\Phi'\varphi - \mathbf{1}\|^2$

under the constraint φ^* has minimal norm

 $\Phi' \varphi^* = \mathbf{1}$ is a system of *N* linear equations with *D* unknowns \rightarrow may not have a solution (e.g. D < N) \rightarrow may have an infinite number of solutions (e.g. N < D)

Turn into a least squares regression problem:

 $\varphi^* = \arg\min_{\varphi} \|\Phi'\varphi - \mathbf{1}\|^2$

under the constraint φ^* has minimal norm

 \rightarrow unique solution:

 $\varphi^* = (\Phi')^+ \mathbf{1} = (\Phi \Phi')^+ \Phi \mathbf{1}$

Note that $\Phi \mathbf{1} = \sum_{i=1}^{N} \varphi_i$ is the sum-pooled representation

Relationship with max-pooling

BOV encoding:

- $\varphi_i = [0, 0, ..., 0, 1, 0, ..., 0]'$
- Denote by n_k the number of patches assigned to codeword k

$$\varphi^* = (\Phi \Phi')^+ \Phi \mathbf{1}$$

$$\Phi \Phi' = \begin{pmatrix} n_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & n_K \end{pmatrix}$$

$$\Phi \mathbf{1} = [n_1, \dots, n_K]$$

$$(\Phi\Phi')^{+} = \begin{pmatrix} l_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & i_K \end{pmatrix} \text{ with } i_k = \frac{1}{n_k} \text{ if } n_k \neq 0, 0 \text{ otherwise } l_k$$

k-th dim of φ^* is 1 if $n_k \neq 0$, 0 otherwise $\rightarrow \varphi^*$ is the max-pooled BOV

Relationship with max-pooling

We can show a more general property:

- assume that $\varphi_i \in \{q_1, \dots, q_K\}$
- $Q = [q_1, ..., q_K]$ the $D \times K$ codebook matrix is orthonormal
- n_k the number of patches such that $\varphi_i = q_k$

We have:

$$\varphi^* = \sum_{k=1,n_k \neq 0}^K q_k$$

i.e. φ^* is independent of n_k 's

Regularization

In practice, the pseudo-inverse is not a continuous operation \rightarrow add a regularization parameter λ : $\varphi_{\lambda}^* = \arg \min_{\varphi} \|\Phi' \varphi - \mathbf{1}\|^2$

$$\varphi_{\lambda}^{*} = \arg \min_{\varphi} \|\Phi'\varphi - \mathbf{1}\|^{2} + \lambda \|\varphi\|^{2}$$
$$\varphi_{\lambda}^{*} = (\Phi\Phi' + \lambda I)^{-1} \Phi \mathbf{1}$$

Not only regularization parameter:

- when $\lambda \to 0$: max pooling
- when $\lambda \to \infty$, $\varphi_{\lambda}^* \approx \Phi \mathbf{1}/\lambda$: sum pooling

 \rightarrow interpolation between sum pooling and max pooling

BOV example:
$$\varphi_{\lambda}^* = \left[\frac{n_1}{n_1 + \lambda}, \dots, \frac{n_D}{n_D + \lambda}\right]$$

Computing the GMP in practice

We need to solve: $(\Phi \Phi' + \lambda I) \varphi_{\lambda}^* = \Phi \mathbf{1}$ \rightarrow linear system of *D* equations with *D* unknowns: cost in $O(D^2)$ \bigotimes Impractical if the embedding is high-dimensional

Since $(\Phi \Phi' + \lambda I)$ is PSD, we can use Conjugate Gradient Descent \rightarrow still too slow for large *D*

Computing the GMP in practice

We need to solve: $(\Phi \Phi' + \lambda I) \varphi_{\lambda}^* = \Phi \mathbf{1}$ \rightarrow linear system of *D* equations with *D* unknowns: cost in $O(D^2)$ \bigotimes Impractical if the embedding is high-dimensional

Since $(\Phi \Phi' + \lambda I)$ is PSD, we can use Conjugate Gradient Descent \rightarrow still too slow for large *D*

Exploit the embedding structure:

- VLAD or FV (with hard assignment) are block-sparse
- $(\Phi \Phi' + \lambda I)$ is block-diagonal

 \rightarrow solve block-by-block: cost in $O\left(\frac{D}{C}\frac{D}{C}C\right) = O\left(\frac{D^2}{C}\right)$ where *C* is the codebook size

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Experiments: instance-level image retrieval

Task: Given a query image, find similar images in a database

Experiments: instance-level image retrieval

Oxford dataset

INRIA Holidays dataset

Experiments: instance-level image retrieval

	C	D	mAP		
method 4			Holidays	Ox5k	Ox105k
BOW [4]	20k	20,000	43.7	35.4	-
BOW [4]	200k	200,000	54.0	36.4	-
VLAD [4]	64	4,096	55.6	37.8	
Fisher [4]	64	4,096	59.5	41.8	-
VLAD-intra [48]	256	32,536	65.3	55.8	-
VLAD-intra [48]	256	$\rightarrow 128$	62.5	44.8	37.4
		Our met	hods		
$\phi_{\triangle} + \psi_{*} + RN$	16	1,920	68.5	53.7	46.2
$\phi_{\triangle} + \psi_{s} + RN$	64	8,064	73.4	63.0	55.0
$\phi_{\triangle} + \psi_{d} + RN$	16	1,920	70.7	57.4	50.7
$\phi_{\Delta} + \psi_{d} + RN$	64	8,064	75.5	67.0	60.2
$\phi_{\triangle} + \psi_{gmp} + RN$	16	1,920	67.1	58.3	51.4
$\phi_{\triangle} + \psi_{emp} + RN$	64	8,064	76.5	70.0	64.4

Murray, Jegou, Perronnin, Zisserman. Interferences in Match Kernels. TPAMI, 2016

Relationship with saliency

Compute a weight map: for each pixel, the weight is the sum of the weights of the patches it belongs to

*Jetley, Murray, Vig. End-To-End Saliency Mapping via Probability Distribution Prediction. CVPR, 2016 © 2017 NAVER LABS. All rights reserved.

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

We proposed two aggregation strategies that are applicable to any embedding function φ :

- DA: "democratises" the contribution of each descriptor to a set comparison metric
- GMP: equalises the similarity between each descriptor and the aggregated representation
- Both lead to significant improvements over aggregation baselines

