
© 2017 NAVER LABS. All rights reserved.

Naila Murray (Naver Labs Europe)
Hervé Jegou (Facebook AI Research)
Florent Perronnin (Naver Labs Europe)
Andrew Zisserman (DeepMind, U. of Oxford)

Horizon Maths, November 23rd, 2018

Interferences in Match Kernels

© 2017 NAVER LABS. All rights reserved.

Patch-based image representations

How to represent images in a patch-based framework? Traditionally:
• extract !	patch descriptors #$, … , #'
• encode patch descriptor: # →)(#)
• aggregate encodings

Common similarity metric:
dot-product → can be interpreted as a match kernel
In match kernels, one has to deal with interference, i.e. with the fact that even if two descriptors are
unrelated, their matching score may contribute to the overall similarity.

…

© 2017 NAVER LABS. All rights reserved.

Coding step

Non-linear mapping # →) # of descriptors into a higher-dim space
e.g. from 128 dim → 1K-1M dim

Possible encodings include:
• Bag-of-visual-words (BOV):) # = 	 0, 0, … , 0, 1, 0, … , 0 ′

Sivic, Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos”. ICCV 2003.
Csurka, Dance, Fan, Willamowski, Bray, “Visual categorization with bag of keypoints”. ECCV SLCV 2004.

• Vector of Locally Aggregated Descriptors (VLAD):) # = 	 0, … , 0, (# − 12), 0, … , 0 ′
Jégou, Douze, Schmid and Pérez, “Aggregating local descriptors into a compact image representation”. CVPR 2010.

• Fisher Vector (FV):) # = 	 0, 0, … , 0, 3456
76� 96

, $

:76
�

3456 ;

96
; − 1 , 0, … , 0 ′

Perronnin and Dance, “Fisher kernels on visual categories for image categorization”. CVPR 2007.

© 2017 NAVER LABS. All rights reserved.

Deep embeddings

Can use direct mapping < →)$,… ,)' from image to set of patch embeddings, e.g. using CNNs

Possible mapping functions include the convolutional sub-networks of:
• ResNet

He, Zhang, Ren, Sun. ”Deep Resdiual Learning for Image recognition”. CVPR 2016.

• Dilated Residual Networks
Yu, Koltun, Funkhouser. “Dilated Residual Networks”. CVPR 2017.

• DELF (DEep Local Features)
Noh, Araujo, Sim, Weyand, Han. “Largescale image retrieval with attentive deep local features”. ICCV 2017.

→ not the focus of this work, we take embeddings for granted

© 2017 NAVER LABS. All rights reserved.

Aggregation step

Involves aggregating several patch embeddings:
J fixed-length representation
J achieves invariance to embedding perturbation
L information loss

© 2017 NAVER LABS. All rights reserved.

Aggregation step

Involves aggregating several patch embeddings:
J fixed-length representation
J achieves invariance to embedding perturbation
L information loss

Two standard aggregation strategies:

Sum pooling: ∑)(#2)
�
2

© 2017 NAVER LABS. All rights reserved.

Aggregation step

Involves aggregating several patch embeddings:
J fixed-length representation
J achieves invariance to embedding perturbation
L information loss

Two standard aggregation strategies:

Sum pooling: ∑)(#2)
�
2

Max pooling: max
2
)(#2)

© 2017 NAVER LABS. All rights reserved.

Sum / Average pooling

J Applicable to any embedding function)
L Based on an incorrect independence assumption
→ frequent (“bursty”) descriptors over-influence the final representation

Corrected a posteriori using non-linear transformations:
• re-weighting visual words

Jegou, Douze, Schmid, “On the burstiness of visual elements”. CVPR 2009.

• power transformation
Perronnin, Sanchez, Liu, “Large-scale image categorization with explicit data embedding. CVPR 2010.
Vedaldi, Zisserman, “Efficient Additive Kernels via Explicit Feature Maps”. CVPR 2010.
Perronnin, Sanchez, Mensink, “Improving the Fisher kernel for large-scale image classification”. ECCV 2010.

• ℓ:-normalization over each VLAD pooling region
Arandjelovic and Zisserman, “All about VLAD”. CVPR 2013.

L Heuristic and/or specific to a given representation

© 2017 NAVER LABS. All rights reserved.

Max pooling

J Frequent and rare descriptors contribute meaningfully
L Only applicable to BOV-type encodings (e.g. sparse coding)

Application to VLAD, FV, etc. is inappropriate because max operation disregards the encoding
structure.

We propose two aggregation strategies that are applicable to any B:
Democratic Aggregation
Generalized Max Pooling

© 2017 NAVER LABS. All rights reserved.

Intuition

We aggregate a single embedding: → or → with a set of tightly clustered embeddings →

Sum / Average Pooling

Murray, Jegou, Perronnin, Zisserman. Interferences in match kernels. TPAMI 2017.

© 2017 NAVER LABS. All rights reserved.

Intuition

We aggregate a single embedding: → or → with a set of tightly clustered embeddings →

Sum / Average Pooling Generalized Max PoolingDemocratic aggregation

Murray, Jegou, Perronnin, Zisserman. Interferences in match kernels. TPAMI 2017.

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Democratic aggregation

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

© 2017 NAVER LABS. All rights reserved.

Democratic aggregation

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

We wish the following to hold for each)2:

)HI)2

'

2J$

= K

→ equal contribution of each patch to self-similarity of the set

© 2017 NAVER LABS. All rights reserved.

Democratic aggregation

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

We wish the following to hold for each)2:

)HI)2

'

2J$

= K

→ equal contribution of each patch to self-similarity of the set

As we typically ℓ:-normalize the final embedding)∗, we can set K arbitrarily.

In matrix form, with M = ΦHΦ we rewrite: MNO = NO

© 2017 NAVER LABS. All rights reserved.

Democratic aggregation

To achieve democratization we introduce a set of weights P$, … , P' :

P)HIP2)2

'

2J$

= K

In matrix form, with Q = RFST(U), we write: 	QMQNO = NO

We solve for Q	using a modified version of the Sinkhorn algorithm.

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Generalized Max Pooling

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

© 2017 NAVER LABS. All rights reserved.

Generalized Max Pooling

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

We wish our aggregated representation)∗ to satisfy:

)2
H)∗ = K

→ equalize the matching contribution of each patch

© 2017 NAVER LABS. All rights reserved.

Generalized Max Pooling

Notations:
•)2 is the D×1 embedded vector of patch F
• Φ =)$,… ,)' is the D×!	matrix of embeddings

We wish our aggregated representation)∗ to satisfy:

)2
H)∗ = K

→ equalize the matching contribution of each patch

Since we typically ℓ:-normalize the final)∗, we can set K arbitrarily

In matrix form, we rewrite: ΦH)∗ = N

© 2017 NAVER LABS. All rights reserved.

Generalized Max Pooling

ΦH)∗ = N is a system of ! linear equations with D unknowns
→ may not have a solution (e.g. D	 < !)
→ may have an infinite number of solutions (e.g. 	! < D)

Turn into a least squares regression problem:

)∗ = argmin[ΦH) − N :

under the constraint)∗ has minimal norm

© 2017 NAVER LABS. All rights reserved.

Generalized Max Pooling

ΦH)∗ = N is a system of ! linear equations with D unknowns
→ may not have a solution (e.g. D	 < !)
→ may have an infinite number of solutions (e.g. 	! < D)

Turn into a least squares regression problem:

)∗ = argmin[ΦH) − N :

under the constraint)∗ has minimal norm

→ unique solution:)∗ = (ΦH)\N = (ΦΦH)\ΦN

Note that ΦN = ∑)2
'
2J$ is the sum-pooled representation

© 2017 NAVER LABS. All rights reserved.

Relationship with max-pooling

BOV encoding:
•)2 = 	 0, 0, … , 0, 1, 0, … , 0 ′
• Denote by]^ the number of patches assigned to codeword k

)∗ = (ΦΦH)\ΦN

ΦΦH =
]$ ⋯ 0
⋮ ⋱ ⋮
0 ⋯]b

ΦN = []$, … ,]b]

ΦΦH \ =
F$ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Fb

with F^ =
$

ef
	Fg]^ ≠ 0, 0 otherwise

k-th dim of)∗ is 1 if]^≠ 0, 0 otherwise → B∗ is the max-pooled BOV

© 2017 NAVER LABS. All rights reserved.

Relationship with max-pooling

We can show a more general property:
• assume that)2 ∈ j$, … , jb
• k = j$, … , jb the D×M	codebook matrix is orthonormal
•]^ the number of patches such that)2 = j^

We have:
)∗ = ∑ j^

b
^J$,eflm

i.e. B∗ is independent of no’s

© 2017 NAVER LABS. All rights reserved.

Regularization

In practice, the pseudo-inverse is not a continuous operation
→ add a regularization parameter p:)q

∗ = argmin[ΦH) − N : + p) :

)q
∗ = (ΦΦH+p<)4$ΦN

Not only regularization parameter:
• when p → 0: max pooling
• when p → ∞,)q

∗ ≈ ΦN/p: sum pooling
→ interpolation between sum pooling and max pooling

BOV example:)q
∗ = ev

ev\q
, … , ew

ew\q

© 2017 NAVER LABS. All rights reserved.

Computing the GMP in practice

We need to solve:(ΦΦH+p<))q
∗ = ΦN

→ linear system of D	equations with D	unknowns: cost in x(D:)
L Impractical if the embedding is high-dimensional

Since (ΦΦH+p<) is PSD, we can use Conjugate Gradient Descent
→ still too slow for large D

© 2017 NAVER LABS. All rights reserved.

Computing the GMP in practice

We need to solve:(ΦΦH+p<))q
∗ = ΦN

→ linear system of D	equations with D	unknowns: cost in x(D:)
L Impractical if the embedding is high-dimensional

Since (ΦΦH+p<) is PSD, we can use Conjugate Gradient Descent
→ still too slow for large D

Exploit the embedding structure:
• VLAD or FV (with hard assignment) are

block-sparse
• (ΦΦH+p<) is block-diagonal

→ solve block-by-block: cost in	x y

z

y

z
{ = x y;

z
where { is the codebook size

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Experiments: instance-level image retrieval

Task: Given a query image, find similar images in a database

© 2017 NAVER LABS. All rights reserved.

Experiments: instance-level image retrieval

We evaluate on:

Oxford dataset
5k images
5k images + 100k distractor images

INRIA Holidays dataset
1491 images

© 2017 NAVER LABS. All rights reserved.

Experiments: instance-level image retrieval

Murray, Jegou, Perronnin, Zisserman. Interferences in Match Kernels. TPAMI, 2016

© 2017 NAVER LABS. All rights reserved.

Relationship with saliency

Compute a weight map: for each pixel, the weight is the sum of the weights of the patches it belongs to

(x,y)

|2
|}

|^

weight at position (x,y) is |2 + |} + |^

image weight
map

weighted
image

*saliency-weighted
image

*Jetley, Murray, Vig. End-To-End Saliency Mapping via Probability Distribution Prediction. CVPR, 2016

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Outline

Introduction

Democratic aggregation

Generalized Max Pooling

Experiments

Conclusion

© 2017 NAVER LABS. All rights reserved.

Conclusion

We proposed two aggregation strategies that are applicable to any embedding function):
• DA: “democratises” the contribution of each descriptor to a set comparison metric
• GMP: equalises the similarity between each descriptor and the aggregated representation
• Both lead to significant improvements over aggregation baselines

Thanks!

© 2017 NAVER LABS. All rights reserved.

